Convergence of Newton's method under Vertgeim conditions: new extensions using restricted convergence domains

被引:0
|
作者
Argyros, I. K. [1 ]
Ezquerro, J. A. [2 ]
Hernandez-Veron, M. A. [2 ]
Magrenan, A. A. [3 ]
机构
[1] Cameron Univ, Dept Math Sci, Lawton, OK 73505 USA
[2] Univ La Rioja, Dept Math & Computat, Calle Luis de Ulloa S-N, Logrono 26004, Spain
[3] Int Univ La Rioja, Escuela Super Ingn & Tecnol, Ave Paz 137, Logrono 26002, Spain
关键词
Newton's method; Recurrent functions; Holder continuity; Semilocal convergence; Integral equation; Differential equation; KANTOROVICH APPROXIMATIONS;
D O I
10.1007/s10910-016-0720-x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present new sufficient convergence conditions for the semilocal convergence of Newton's method to a locally unique solution of a nonlinear equation in a Banach space. We use Holder and center Holder conditions, instead of just Holder conditions, for the first derivative of the operator involved in combination with our new idea of restricted convergence domains. This way, we find a more precise location where the iterates lie, leading to at least as small Holder constants as in earlier studies. The new convergence conditions are weaker, the error bounds are tighter and the information on the solution at least as precise as before. These advantages are obtained under the same computational cost. Numerical examples show that our results can be used to solve equations where older results cannot.
引用
下载
收藏
页码:1392 / 1406
页数:15
相关论文
共 50 条
  • [31] An improvement of convergence in Newton's method
    Lopez, S
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 145 (3-4) : 323 - 327
  • [32] On the convergence of open Newton’s method
    Ajil Kunnarath
    Santhosh George
    Ramya Sadananda
    Jidesh Padikkal
    Ioannis K. Argyros
    The Journal of Analysis, 2023, 31 (4) : 2473 - 2500
  • [33] On the convergence of open Newton's method
    Kunnarath, Ajil
    George, Santhosh
    Sadananda, Ramya
    Padikkal, Jidesh
    Argyros, Ioannis K.
    JOURNAL OF ANALYSIS, 2023, 31 (04): : 2473 - 2500
  • [34] Chaotic Convergence of Newton's Method
    Allen, Jont B.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 1683 - 1690
  • [35] Accelerated convergence in Newton's method
    Ford, WF
    Pennline, JA
    SIAM REVIEW, 1996, 38 (04) : 658 - 659
  • [36] On the radius convergence of Newton's method
    Argyros, IK
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2001, 77 (03) : 389 - 400
  • [37] CONVERGENCE OF THE RELAXED NEWTON'S METHOD
    Argyros, Ioannis Konstantinos
    Manuel Gutierrez, Jose
    Alberto Magrenan, Angel
    Romero, Natalia
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (01) : 137 - 162
  • [38] A GENERAL SEMILOCAL CONVERGENCE RESULT FOR NEWTON'S METHOD UNDER CENTERED CONDITIONS FOR THE SECOND DERIVATIVE
    Antonio Ezquerro, Jose
    Gonzalez, Daniel
    Angel Hernandez, Miguel
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (01): : 149 - 167
  • [39] EXTENDING THE APPLICABILITY OF GAUSS-NEWTON METHOD FOR CONVEX COMPOSITE OPTIMIZATION ON RIEMANNIAN MANIFOLDS USING RESTRICTED CONVERGENCE DOMAINS
    Argyros, Ioannis K.
    George, Santhosh
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [40] New w-Convergence Conditions for the Newton-Kantorovich Method
    Argyros, Ioannis K.
    Ren, Hongmin
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2014, 46 (01): : 77 - 86