MEAN DIMENSION THEORY IN SYMBOLIC DYNAMICS FOR FINITELY GENERATED AMENABLE GROUPS
被引:0
|
作者:
Wang, Yunping
论文数: 0引用数: 0
h-index: 0
机构:
Ningbo Univ Technol, Sch Sci, Ningbo 315211, Zhejiang, Peoples R ChinaNingbo Univ Technol, Sch Sci, Ningbo 315211, Zhejiang, Peoples R China
Wang, Yunping
[1
]
Chen, Ercai
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
Nanjing Normal Univ, Inst Math, Nanjing 210046, Jiangsu, Peoples R ChinaNingbo Univ Technol, Sch Sci, Ningbo 315211, Zhejiang, Peoples R China
Chen, Ercai
[2
,3
]
Zhou, Xiaoyao
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
Nanjing Normal Univ, Inst Math, Nanjing 210046, Jiangsu, Peoples R ChinaNingbo Univ Technol, Sch Sci, Ningbo 315211, Zhejiang, Peoples R China
Zhou, Xiaoyao
[2
,3
]
机构:
[1] Ningbo Univ Technol, Sch Sci, Ningbo 315211, Zhejiang, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
[3] Nanjing Normal Univ, Inst Math, Nanjing 210046, Jiangsu, Peoples R China
Key words and phrases;
Subshift;
metric mean dimension;
mean Hausdorff dimension;
rate distortion dimension;
polynomial growth group;
POLYNOMIAL-GROWTH;
ENTROPY;
D O I:
10.3934/dcds.2022050
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we mainly show a close relationship between topo-logical entropy and mean dimension theory for actions of polynomial growth groups. We show that metric mean dimension and mean Hausdorff dimension of subshifts with respect to the lower rank subgroup are equal to its topological entropy multiplied by the growth rate of the subgroup. Meanwhile, we prove that above result holds for rate distortion dimension of subshifts with respect to a lower rank subgroup and measure entropy. Furthermore, we present some examples.
机构:
UNIV LONDON QUEEN MARY & WESTFIELD COLL,SCH MATH SCI,LONDON E1 4NS,ENGLANDUNIV LONDON QUEEN MARY & WESTFIELD COLL,SCH MATH SCI,LONDON E1 4NS,ENGLAND
Hrushovski, E
Kropholler, PH
论文数: 0引用数: 0
h-index: 0
机构:
UNIV LONDON QUEEN MARY & WESTFIELD COLL,SCH MATH SCI,LONDON E1 4NS,ENGLANDUNIV LONDON QUEEN MARY & WESTFIELD COLL,SCH MATH SCI,LONDON E1 4NS,ENGLAND
Kropholler, PH
Lubotzky, A
论文数: 0引用数: 0
h-index: 0
机构:
UNIV LONDON QUEEN MARY & WESTFIELD COLL,SCH MATH SCI,LONDON E1 4NS,ENGLANDUNIV LONDON QUEEN MARY & WESTFIELD COLL,SCH MATH SCI,LONDON E1 4NS,ENGLAND
Lubotzky, A
Shalev, A
论文数: 0引用数: 0
h-index: 0
机构:
UNIV LONDON QUEEN MARY & WESTFIELD COLL,SCH MATH SCI,LONDON E1 4NS,ENGLANDUNIV LONDON QUEEN MARY & WESTFIELD COLL,SCH MATH SCI,LONDON E1 4NS,ENGLAND