Towards large-scale in free-standing graphene and N-graphene sheets

被引:69
|
作者
Tatarova, E. [1 ]
Dias, A. [1 ]
Henriques, J. [1 ]
Abrashev, M. [2 ]
Bundaleska, N. [1 ]
Kovacevic, E. [3 ,4 ]
Bundaleski, N. [5 ]
Cvelbar, U. [6 ]
Valcheva, E. [2 ]
Arnaudov, B. [2 ]
Botelho do Rego, A. M. [7 ,8 ]
Ferraria, A. M. [7 ,8 ]
Berndt, J. [3 ,4 ]
Felizardo, E. [9 ]
Teodoro, O. M. N. D. [5 ]
Strunskus, Th. [10 ]
Alves, L. L. [1 ]
Goncalves, B. [1 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, P-1049 Lisbon, Portugal
[2] Sofia Univ, Fac Phys, Sofia 1164, Bulgaria
[3] CNRS, GREMI UMR 7344, Orleans 2, France
[4] Univ Orleans, Orleans 2, France
[5] Univ Nova Lisboa, Dept Fis, Fac Ciencias & Tecnol, P-2829516 Lisbon, Portugal
[6] Jozef Stefan Inst, Dept Surface Engn & Optoelect F4, Ljubljana 1000, Slovenia
[7] Univ Lisbon, Inst Super Tecn, Ctr Quim Fis Mol, P-1049 Lisbon, Portugal
[8] Univ Lisbon, Inst Super Tecn, IN, P-1049 Lisbon, Portugal
[9] CERN, Geneva, Switzerland
[10] Christian Albrechts Univ Kiel, Inst Mat Sci, Kiel, Germany
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
NITROGEN-DOPED GRAPHENE; ABSORPTION FINE-STRUCTURE; RAMAN-SPECTROSCOPY; ELECTROCATALYTIC ACTIVITY; GRAPHITE; FILMS; OXIDE; REDUCTION; SURFACE; NEXAFS;
D O I
10.1038/s41598-017-10810-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
One of the greatest challenges in the commercialization of graphene and derivatives is production of high quality material in bulk quantities at low price and in a reproducible manner. The very limited control, or even lack of, over the synthesis process is one of the main problems of conventional approaches. Herein, we present a microwave plasma-enabled scalable route for continuous, large-scale fabrication of free-standing graphene and nitrogen doped graphene sheets. The method's crucial advantage relies on harnessing unique plasma mechanisms to control the material and energy fluxes of the main building units at the atomic scale. By tailoring the high energy density plasma environment and complementarily applying in situ IR and soft UV radiation, a controllable selective synthesis of high quality graphene sheets at 2 mg/min yield with prescribed structural qualities was achieved. Raman spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy, X-ray photoelectron spectroscopy and Near Edge X-ray-absorption fine-structure spectroscopy were used to probe the morphological, chemical and microstructural features of the produced material. The method described here is scalable and show a potential for controllable, large-scale fabrication of other graphene derivatives and promotes microwave plasmas as a competitive, green, and cost-effective alternative to presently used chemical methods.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Elastic straining of free-standing monolayer graphene
    Cao, Ke
    Feng, Shizhe
    Han, Ying
    Gao, Libo
    Thuc Hue Ly
    Xu, Zhiping
    Lu, Yang
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [32] Nanographene growing on free-standing monolayer graphene
    Maehara, Yosuke
    Yamazaki, Kenji
    Gohara, Kazutoshi
    [J]. CARBON, 2019, 143 : 669 - 677
  • [33] Elastic straining of free-standing monolayer graphene
    Ke Cao
    Shizhe Feng
    Ying Han
    Libo Gao
    Thuc Hue Ly
    Zhiping Xu
    Yang Lu
    [J]. Nature Communications, 11
  • [34] Plasmon spectroscopy of free-standing graphene films
    Eberlein, T.
    Bangert, U.
    Nair, R. R.
    Jones, R.
    Gass, M.
    Bleloch, A. L.
    Novoselov, K. S.
    Geim, A.
    Briddon, P. R.
    [J]. PHYSICAL REVIEW B, 2008, 77 (23)
  • [35] Graphene resist interlacing process for versatile fabrication of free-standing graphene
    Kumar, S.
    Rezvani, E.
    Nicolosi, V.
    Duesberg, G. S.
    [J]. NANOTECHNOLOGY, 2012, 23 (14)
  • [36] Facile tool for green synthesis of graphene sheets and their smart free-standing UV protective film
    Attia, Nour F.
    Park, Jaewoo
    Oh, Hyunchul
    [J]. APPLIED SURFACE SCIENCE, 2018, 458 : 425 - 430
  • [37] Large-scale preparation of graphene sheets and their easy incorporation with other nanomaterials
    Xiujuan Xu
    Jingui Qin
    Zhen Li
    [J]. Polymer Bulletin, 2012, 69 : 899 - 910
  • [38] Large-scale preparation of graphene sheets and their easy incorporation with other nanomaterials
    Xu, Xiujuan
    Qin, Jingui
    Li, Zhen
    [J]. POLYMER BULLETIN, 2012, 69 (08) : 899 - 910
  • [39] Active bialkali photocathodes on free-standing graphene substrates
    Yamaguchi, Hisato
    Liu, Fangze
    DeFazio, Jeffrey
    Villarrubia, Claudia W. Narvaez
    Finkenstadt, Daniel
    Shabaev, Andrew
    Jensen, Kevin L.
    Pavlenko, Vitaly
    Mehl, Michael
    Lambrakos, Sam
    Gupta, Gautam
    Mohite, Aditya D.
    Moody, Nathan A.
    [J]. NPJ 2D MATERIALS AND APPLICATIONS, 2017, 1
  • [40] The effect of intrinsic crumpling on the mechanics of free-standing graphene
    Nicholl, Ryan J. T.
    Conley, Hiram J.
    Lavrik, Nickolay V.
    Vlassiouk, Ivan
    Puzyrev, Yevgeniy S.
    Sreenivas, Vijayashree Parsi
    Pantelides, Sokrates T.
    Bolotin, Kirill I.
    [J]. NATURE COMMUNICATIONS, 2015, 6