DZip: improved general-purpose lossless compression based on novel neural network modeling

被引:19
|
作者
Goyal, Mohit [1 ]
Tatwawadi, Kedar [2 ]
Chandak, Shubham [2 ]
Ochoa, Idoia [1 ,3 ]
机构
[1] Univ Illinois, Elect & Comp Engn, Urbana, IL 61801 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[3] Univ Navarra, Dept Elect Engn, Pamplona, Spain
关键词
D O I
10.1109/DCC50243.2021.00023
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider lossless compression based on statistical data modeling followed by prediction-based encoding, where an accurate statistical model for the input data leads to substantial improvements in compression. We propose DZip, a general-purpose compressor for sequential data that exploits the well-known modeling capabilities of neural networks (NNs) for prediction, followed by arithmetic coding. DZip uses a novel hybrid architecture based on adaptive and semi-adaptive training. Unlike most NN-based compressors, DZip does not require additional training data and is not restricted to specific data types. The proposed compressor outperforms general-purpose compressors such as Gzip (29% size reduction on average) and 7zip (12% size reduction on average) on a variety of real datasets, achieves near-optimal compression on synthetic datasets, and performs close to specialized compressors for large sequence lengths, without any human input. While the main limitation of NN-based compressors is generally the encoding/decoding speed, we empirically demonstrate that DZip achieves comparable compression ratio to other NN-based compressors while being several times faster. The source code for DZip and links to the datasets are available at https : //github . com/mohit1997/Dzip-torch.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 50 条
  • [32] Lossless data compression scheme based on neural network and SVM
    Hujin
    Yang, Guowei
    Wang, Shoujue
    Gao, Xuhui
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 : 638 - 641
  • [33] Perceptron based neural network predictors in lossless data compression
    Logeswaran, R
    2000 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I-III, 2000, : 1709 - 1713
  • [34] RNIW: A novel general-purpose DSP architecture
    Qing, H
    Huan, HC
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 3302 - 3305
  • [35] A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems
    Bruederle, Daniel
    Petrovici, Mihai A.
    Vogginger, Bernhard
    Ehrlich, Matthias
    Pfeil, Thomas
    Millner, Sebastian
    Gruebl, Andreas
    Wendt, Karsten
    Mueller, Eric
    Schwartz, Marc-Olivier
    de Oliveira, Dan Husmann
    Jeltsch, Sebastian
    Fieres, Johannes
    Schilling, Moritz
    Mueller, Paul
    Breitwieser, Oliver
    Petkov, Venelin
    Muller, Lyle
    Davison, Andrew P.
    Krishnamurthy, Pradeep
    Kremkow, Jens
    Lundqvist, Mikael
    Muller, Eilif
    Partzsch, Johannes
    Scholze, Stefan
    Zuehl, Lukas
    Mayr, Christian
    Destexhe, Alain
    Diesmann, Markus
    Potjans, Tobias C.
    Lansner, Anders
    Schueffny, Rene
    Schemmel, Johannes
    Meier, Karlheinz
    BIOLOGICAL CYBERNETICS, 2011, 104 (4-5) : 263 - 296
  • [36] A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems
    Daniel Brüderle
    Mihai A. Petrovici
    Bernhard Vogginger
    Matthias Ehrlich
    Thomas Pfeil
    Sebastian Millner
    Andreas Grübl
    Karsten Wendt
    Eric Müller
    Marc-Olivier Schwartz
    Dan Husmann de Oliveira
    Sebastian Jeltsch
    Johannes Fieres
    Moritz Schilling
    Paul Müller
    Oliver Breitwieser
    Venelin Petkov
    Lyle Muller
    Andrew P. Davison
    Pradeep Krishnamurthy
    Jens Kremkow
    Mikael Lundqvist
    Eilif Muller
    Johannes Partzsch
    Stefan Scholze
    Lukas Zühl
    Christian Mayr
    Alain Destexhe
    Markus Diesmann
    Tobias C. Potjans
    Anders Lansner
    René Schüffny
    Johannes Schemmel
    Karlheinz Meier
    Biological Cybernetics, 2011, 104 : 263 - 296
  • [37] General-purpose filter design for neural prosthetic devices
    Srinivasan, Lakshminarayan
    Eden, Uri T.
    Mitter, Sanjoy K.
    Brown, Emery N.
    JOURNAL OF NEUROPHYSIOLOGY, 2007, 98 (04) : 2456 - 2475
  • [38] A General-Purpose Transferable Predictor for Neural Architecture Search
    Han, Fred X.
    Mills, Keith G.
    Chudak, Fabian
    Riahi, Parsa
    Salameh, Mohammad
    Zhang, Jialin
    Lul, Wei
    Jui, Shangling
    Niu, Di
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 721 - 729
  • [39] A Syntactic Neural Model for General-Purpose Code Generation
    Yin, Pengcheng
    Neubig, Graham
    PROCEEDINGS OF THE 55TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2017), VOL 1, 2017, : 440 - 450
  • [40] DESIGN OF A GENERAL-PURPOSE MIMO PREDICTOR WITH NEURAL NETWORKS
    CUI, XZ
    SHIN, KG
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 1994, 5 (02) : 198 - 210