Robust quantile regression using a generalized class of skewed distributions

被引:23
|
作者
Morales, Christian Galarza [1 ]
Davila, Victor Lachos [2 ]
Cabral, Celso Barbosa [3 ]
Cepero, Luis Castro [4 ,5 ]
机构
[1] Escuela Super Politecn Litoral, Dept Matemat, ESPOL, Guayaquil 090902, Ecuador
[2] Univ Estadual Campinas, Dept Estat, BR-13083859 Campinas, SP, Brazil
[3] Univ Fed Amazonas, Dept Estat, BR-69080000 Manaus, Amazonas, Brazil
[4] Univ Concepcion, Dept Estat, Concepcion 4070386, Chile
[5] Univ Concepcion, CI2MA, Concepcion 4070386, Chile
来源
STAT | 2017年 / 6卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
EM algorithm; quantile regression model; scale mixtures of normal distributions; EM ALGORITHM; MODELS;
D O I
10.1002/sta4.140
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is well known that the widely popular mean regression model could be inadequate if the probability distribution of the observed responses do not follow a symmetric distribution. To deal with this situation, the quantile regression turns to be a more robust alternative for accommodating outliers and the misspecification of the error distribution because it characterizes the entire conditional distribution of the outcome variable. This paper presents a likelihood-based approach for the estimation of the regression quantiles based on a new family of skewed distributions. This family includes the skewed version of normal, Student-t, Laplace, contaminated normal and slash distribution, all with the zero quantile property for the error term and with a convenient and novel stochastic representation that facilitates the implementation of the expectation-maximization algorithm for maximum likelihood estimation of the pth quantile regression parameters. We evaluate the performance of the proposed expectation-maximization algorithm and the asymptotic properties of the maximum likelihood estimates through empirical experiments and application to a real-life dataset. The algorithm is implemented in the R package lqr, providing full estimation and inference for the parameters as well as simulation envelope plots useful for assessing the goodness of fit. Copyright (C) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:113 / 130
页数:18
相关论文
共 50 条
  • [21] Mean estimation using robust quantile regression with two auxiliary variables
    Shahzad, U.
    Ahmad, I.
    Almanjahie, I. M.
    Al-Noor, N. H.
    Hanif, M.
    SCIENTIA IRANICA, 2023, 30 (03) : 1245 - 1254
  • [22] Compromised imputation based mean estimators using robust quantile regression
    Anas, Malik Muhammad
    Huang, Zhensheng
    Shahzad, Usman
    Zaman, Tolga
    Shahzadi, Shabnam
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 53 (05) : 1700 - 1715
  • [23] Robust Integrative Analysis via Quantile Regression with and
    Zeng, Hao
    Wan, Chuang
    Zhong, Wei
    Liu, Tuo
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2025, 234
  • [24] Robust estimation and regression with parametric quantile functions
    Sottile, Gianluca
    Frumento, Paolo
    Computational Statistics and Data Analysis, 2022, 171
  • [25] A generalized Newton algorithm for quantile regression models
    Zheng, Songfeng
    COMPUTATIONAL STATISTICS, 2014, 29 (06) : 1403 - 1426
  • [26] A generalized Newton algorithm for quantile regression models
    Songfeng Zheng
    Computational Statistics, 2014, 29 : 1403 - 1426
  • [27] Confidence Corridors for Multivariate Generalized Quantile Regression
    Chao, Shih-Kang
    Proksch, Katharina
    Dette, Holger
    Haerdle, Wolfgang Karl
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2017, 35 (01) : 70 - 85
  • [28] A generalized boxplot for skewed and heavy-tailed distributions
    Bruffaerts, Christopher
    Verardi, Vincenzo
    Vermandele, Catherine
    STATISTICS & PROBABILITY LETTERS, 2014, 95 : 110 - 117
  • [29] Robust estimation and regression with parametric quantile functions
    Sottile, Gianluca
    Frumento, Paolo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 171
  • [30] A new robust inference for predictive quantile regression
    Cai, Zongwu
    Chen, Haiqiang
    Liao, Xiaosai
    JOURNAL OF ECONOMETRICS, 2023, 234 (01) : 227 - 250