Robust quantile regression using a generalized class of skewed distributions

被引:23
|
作者
Morales, Christian Galarza [1 ]
Davila, Victor Lachos [2 ]
Cabral, Celso Barbosa [3 ]
Cepero, Luis Castro [4 ,5 ]
机构
[1] Escuela Super Politecn Litoral, Dept Matemat, ESPOL, Guayaquil 090902, Ecuador
[2] Univ Estadual Campinas, Dept Estat, BR-13083859 Campinas, SP, Brazil
[3] Univ Fed Amazonas, Dept Estat, BR-69080000 Manaus, Amazonas, Brazil
[4] Univ Concepcion, Dept Estat, Concepcion 4070386, Chile
[5] Univ Concepcion, CI2MA, Concepcion 4070386, Chile
来源
STAT | 2017年 / 6卷 / 01期
基金
巴西圣保罗研究基金会;
关键词
EM algorithm; quantile regression model; scale mixtures of normal distributions; EM ALGORITHM; MODELS;
D O I
10.1002/sta4.140
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is well known that the widely popular mean regression model could be inadequate if the probability distribution of the observed responses do not follow a symmetric distribution. To deal with this situation, the quantile regression turns to be a more robust alternative for accommodating outliers and the misspecification of the error distribution because it characterizes the entire conditional distribution of the outcome variable. This paper presents a likelihood-based approach for the estimation of the regression quantiles based on a new family of skewed distributions. This family includes the skewed version of normal, Student-t, Laplace, contaminated normal and slash distribution, all with the zero quantile property for the error term and with a convenient and novel stochastic representation that facilitates the implementation of the expectation-maximization algorithm for maximum likelihood estimation of the pth quantile regression parameters. We evaluate the performance of the proposed expectation-maximization algorithm and the asymptotic properties of the maximum likelihood estimates through empirical experiments and application to a real-life dataset. The algorithm is implemented in the R package lqr, providing full estimation and inference for the parameters as well as simulation envelope plots useful for assessing the goodness of fit. Copyright (C) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:113 / 130
页数:18
相关论文
共 50 条
  • [1] Frontier Quantile Model Using a Generalized Class of Skewed Distributions
    Pipitpojanakarn, Varith
    Yamaka, Woraphon
    Sriboonchitta, Songsak
    Maneejuk, Paravee
    ADVANCED SCIENCE LETTERS, 2017, 23 (11) : 10737 - 10742
  • [2] A generalized class of skew distributions and associated robust quantile regression models
    Wichitaksorn, Nuttanan
    Choy, S. T. Boris
    Gerlach, Richard
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2014, 42 (04): : 579 - 596
  • [3] A new class of skewed multivariate distributions with applications to regression analysis
    Ferreira, Jose T. A. S.
    Steel, Mark F. J.
    STATISTICA SINICA, 2007, 17 (02) : 505 - 529
  • [4] ROBUST QUANTILE ESTIMATORS FOR SKEWED POPULATIONS
    HORN, PS
    BIOMETRIKA, 1990, 77 (03) : 631 - 636
  • [5] Bayesian regularized quantile regression:A robust alternative for genome-based prediction of skewed data
    Paulino Pérez-Rodríguez
    Osval A.Montesinos-López
    Abelardo Montesinos-López
    José Crossa
    The Crop Journal, 2020, 8 (05) : 713 - 722
  • [6] Distributions with generalized skewed conditionals and mixtures of such distributions
    Arnold, Barry C.
    Castillo, Enrique
    Sarabia, Jose Maria
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2007, 36 (08) : 1493 - 1503
  • [7] Bayesian regularized quantile regression: A robust alternative for genome-based prediction of skewed data
    Perez-Rodriguez, Paulino
    Montesinos-Lopez, Osval A.
    Montesinos-Lopez, Abelardo
    Crossa, Jose
    CROP JOURNAL, 2020, 8 (05): : 713 - 722
  • [8] Learning with skewed class distributions
    Monard, MC
    Batista, GEAPA
    ADVANCES IN LOGIC, ARTIFICIAL INTELLIGENCE AND ROBOTICS, 2002, 85 : 173 - 180
  • [9] Robust support vector machine with generalized quantile loss for classification and regression
    Yang, Liming
    Dong, Hongwei
    APPLIED SOFT COMPUTING, 2019, 81
  • [10] Robust Multiplicative Scatter Correction Using Quantile Regression
    Hemmateenejad, Bahram
    Mobaraki, Nabiollah
    Baumann, Knut
    JOURNAL OF CHEMOMETRICS, 2024, 38 (11)