Schur Convexity of Mixed Mean of n Variables Involving Three Parameters

被引:1
|
作者
Wang, Dong-Sheng [1 ]
Shi, Huan-Nan [2 ]
Fu, Chun-Ru [3 ]
机构
[1] Beijing Polytech, Basic Courses Dept, Beijing 100176, Peoples R China
[2] Beijing Union Univ, Teachers Coll, Dept Elect Informat, Beijing 100011, Peoples R China
[3] Beijing Union Univ, Appl Coll Sci & Technol, Beijing 102200, Peoples R China
关键词
mixed mean of n variables; Schur convexity; Schur geometric convexity; Schur harmonic convexity; majorization; inequalities; HARMONIC-CONVEXITY; VALUES;
D O I
10.2298/FIL2011663W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the Schur convexity, the Schur geometric convexity and Schur harmonic convexity of the mixed mean of n variables involving three parameters. As an application, we have established some inequalities of the Ky Fan type related to the mixed mean of n variables, and the lower bound inequality of Gini mean for n variables is given.
引用
收藏
页码:3663 / 3674
页数:12
相关论文
共 50 条
  • [21] The Schur-convexity of the mean of a convex function
    Shi, Huan-Nan
    Li, Da-Mao
    Gu, Chun
    APPLIED MATHEMATICS LETTERS, 2009, 22 (06) : 932 - 937
  • [22] THE SCHUR CONVEXITY OF GINI MEAN VALUES IN THE SENSE OF HARMONIC MEAN
    夏卫锋
    褚玉明
    Acta Mathematica Scientia, 2011, 31 (03) : 1103 - 1112
  • [23] Strong Schur-Convexity of the Integral Mean
    Adamek, Miroslaw
    Bakula, Milica Klaricic
    Nikodem, Kazimierz
    RESULTS IN MATHEMATICS, 2023, 78 (02)
  • [24] Strong Schur-Convexity of the Integral Mean
    Mirosław Adamek
    Milica Klaričić Bakula
    Kazimierz Nikodem
    Results in Mathematics, 2023, 78
  • [25] Necessary and sufficient conditions of Schur m-power convexity of a new mixed mean
    Xi, Bo-Yan
    Qi, Feng
    FILOMAT, 2024, 38 (19) : 6937 - 6944
  • [26] THE SCHUR CONVEXITY OF GINI MEAN VALUES IN THE SENSE OF HARMONIC MEAN
    Xia Weifeng
    Chu Yuming
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (03) : 1103 - 1112
  • [27] SCHUR CONVEXITY AND SCHUR-GEOMETRICALLY CONCAVITY OF GENERALIZED EXPONENT MEAN
    Li, Da-Mao
    Shi, Huan-Nan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2009, 3 (02): : 217 - 225
  • [28] Convexity, Schur-convexity and bounds for the gamma function involving the digamma function
    Merkle, M
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (03) : 1053 - 1066
  • [29] SCHUR-GEOMETRIC AND SCHUR-HARMONIC CONVEXITY OF WEIGHTED INTEGRAL MEAN
    Kovac, Sanja
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2021, 175 (02) : 225 - 233
  • [30] A note on Schur-convexity of extended mean values
    Qi, F
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2005, 35 (05) : 1787 - 1793