Finite-strain formulation and FE implementation of a constitutive model for powder compaction

被引:9
|
作者
Stupkiewicz, S. [1 ,2 ]
Piccolroaz, A. [2 ]
Bigoni, D. [2 ]
机构
[1] Inst Fundamental Technol Res, IPPT, PL-02106 Warsaw, Poland
[2] Univ Trento, I-38123 Trento, Italy
关键词
Plasticity; Elastoplastic coupling; Finite element method; Automatic differentiation; MECHANICAL DENSIFICATION; ELASTOPLASTIC FRAMEWORK; FRICTIONAL MATERIALS; COUPLED PROBLEMS; PART II; PLASTICITY; SOLIDS; ALGORITHMS; ELEMENT; DESIGN;
D O I
10.1016/j.cma.2014.09.027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A finite-strain formulation is developed, implemented and tested for a constitutive model capable of describing the transition from granular to fully dense state during cold forming of ceramic powder. This constitutive model (as well as many others employed for geomaterials) embodies a number of features, such as pressure-sensitive yielding, complex hardening rules and elastoplastic coupling, posing considerable problems in a finite-strain formulation and numerical implementation. A number of strategies are proposed to overcome the related problems, in particular, a neo-Hookean type of modification to the elastic potential and the adoption of the second Piola-Kirchhoff stress referred to the intermediate configuration to describe yielding. An incremental scheme compatible with the formulation for elastoplastic coupling at finite strain is also developed, and the corresponding constitutive update problem is solved by applying a return mapping algorithm. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:856 / 880
页数:25
相关论文
共 50 条
  • [11] A finite strain constitutive model for metal powder compaction using a unique and convex single surface yield function
    Bier, Wolfgang
    Hartmann, Stefan
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2006, 25 (06) : 1009 - 1030
  • [12] Evolutionary model of finite-strain thermoelasticity
    A. A. Rogovoi
    O. S. Stolbova
    Journal of Applied Mechanics and Technical Physics, 2008, 49 : 500 - 509
  • [13] An improved, fully symmetric, finite-strain phenomenological constitutive model for shape memory alloys
    Arghavani, J.
    Auricchio, F.
    Naghdabadi, R.
    Reali, A.
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2011, 47 (02) : 166 - 174
  • [14] A FINITE-STRAIN MODEL FOR AN EXPLOSIVE SIMULANT
    TRUMEL, H
    DRAGON, A
    FANGET, A
    JOURNAL DE PHYSIQUE IV, 1994, 4 (C8): : 559 - 564
  • [15] Finite-strain model for an explosive simulant
    Trumel, H.
    Dragon, A.
    Fanget, A.
    Journal De Physique. IV : JP, 1994, 4 (08): : 559 - 564
  • [16] Evolutionary model of finite-strain thermoelasticity
    Rogovoi, A. A.
    Stolbova, O. S.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2008, 49 (03) : 500 - 509
  • [17] A thermomechanically coupled finite-strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys
    Wang, Jun
    Moumni, Ziad
    Zhang, Weihong
    INTERNATIONAL JOURNAL OF PLASTICITY, 2017, 97 : 194 - 221
  • [18] A stochastic constitutive model for disordered cellular materials: Finite-strain uni-axial compression
    Schraad, MW
    Harlow, FH
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2006, 43 (11-12) : 3542 - 3568
  • [19] A finite element finite-strain formulation for modeling colliding blocks of Gent materials
    Feng, Zhi-Qiang
    Renaud, Christine
    Cros, Jean-Michel
    Zhang, Hongwu
    Guan, Zhenqun
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2010, 47 (17) : 2215 - 2222
  • [20] A model for the evolution of laminates in finite-strain elastoplasticity
    Hackl, Klaus
    Heinz, Sebastian
    Mielke, Alexander
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2012, 92 (11-12): : 888 - 909