Hierarchical Bayesian LASSO for a negative binomial regression

被引:7
|
作者
Fu, Shuai [1 ]
机构
[1] SUPSI, Dalle Molle Inst Artificial Intelligence, Manno, Switzerland
关键词
Hierarchical Bayesian inference; LASSO; latent variable; generalized linear regression; negative binomial; Markov chain Monte Carlo; QUANTITATIVE TRAIT LOCI; MAXIMUM-LIKELIHOOD; INCOMPLETE DATA; MARKOV-MODELS; SELECTION;
D O I
10.1080/00949655.2015.1106541
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Numerous researches have been carried out to explain the relationship between the count data y and numbers of covariates x through a generalized linear model (GLM). This paper proposes a hierarchical Bayesian least absolute shrinkage and selection operator (LASSO) solution using six different prior models to the negative binomial regression. Latent variables Z have been introduced to simplify the GLM to a standard linear regression model. The proposed models regard two conjugate zero-mean Normal priors for the regression parameters and three independent priors for the variance: the Exponential, Inverse-Gamma and Scaled Inverse-chi(2) distributions. Different types of priors result in different amounts of shrinkage. A Metropolis-Hastings-within-Gibbs algorithm is used to compute the posterior distribution of the parameters of interest through a data augmentation process. Based on the posterior samples, an original double likelihood ratio test statistic have been proposed to choose the most relevant covariates and shrink the insignificant coefficients to zero. Numerical experiments on a real-life data set prove that Bayesian LASSO methods achieved significantly better predictive accuracy and robustness than the classical maximum likelihood estimation and the standard Bayesian inference.
引用
收藏
页码:2182 / 2203
页数:22
相关论文
共 50 条
  • [1] A HIERARCHICAL BAYESIAN APPROACH TO NEGATIVE BINOMIAL REGRESSION
    Fu, Shuai
    [J]. METHODS AND APPLICATIONS OF ANALYSIS, 2015, 22 (04) : 409 - 428
  • [2] Bayesian lasso regression
    Hans, Chris
    [J]. BIOMETRIKA, 2009, 96 (04) : 835 - 845
  • [3] Bayesian Inference for the Zero Inflated Negative Binomial Regression Model
    Shim, JungSuk
    Lee, Dong-Hee
    Jung, Byoung Cheol
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2011, 24 (05) : 951 - 961
  • [4] Bayesian negative binomial regression for differential expression with confounding factors
    Dadaneh, Siamak Zamani
    Zhou, Mingyuan
    Qian, Xiaoning
    [J]. BIOINFORMATICS, 2018, 34 (19) : 3349 - 3356
  • [5] The Bayesian adaptive lasso regression
    Alhamzawi, Rahim
    Ali, Haithem Taha Mohammad
    [J]. MATHEMATICAL BIOSCIENCES, 2018, 303 : 75 - 82
  • [6] ROBUST BAYESIAN LASSO REGRESSION
    Khadembashiri, Z.
    [J]. JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2016, 8 : 1848 - 1858
  • [7] Negative binomial regression
    McElduff, Fiona
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2008, 171 : 758 - 759
  • [8] NEGATIVE BINOMIAL REGRESSION
    Attanayake, A. M. C. H.
    Perera, S. S. N.
    Liyanage, U. P.
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2020, 64 (01) : 103 - 112
  • [9] Negative Binomial Regression
    [J]. 2015 IEEE/AIAA 34TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC), 2015,
  • [10] Bayesian lasso binary quantile regression
    Dries F. Benoit
    Rahim Alhamzawi
    Keming Yu
    [J]. Computational Statistics, 2013, 28 : 2861 - 2873