Cooperativity in cytochrome P450 3A4 -: Linkages in substrate binding, spin state, uncoupling, and product formation

被引:183
|
作者
Denisov, Ilia G.
Baas, Bradley J.
Grinkova, Yelena V.
Sligar, Stephen G.
机构
[1] Univ Illinois, Dept Biochem, Coll Med, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Chem, Coll Med, Urbana, IL 61801 USA
[3] Univ Illinois, Ctr Biophys & Computat Biol, Coll Med, Urbana, IL 61801 USA
关键词
D O I
10.1074/jbc.M609589200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Understanding the detailed metabolic mechanisms of membrane-associated cytochromes P450 is often hampered by heterogeneity, ill-defined oligomeric state of the enzyme, and variation in the stoichiometry of the functional P450(.)reductase complexes in various reconstituted systems. Here, we describe the detailed characterization of a functionally homogeneous 1:1 complex of cytochrome P450 3A4 (CYP3A4) and cytochrome P450 reductase solubilized via self-assembly in a nanoscale phospholipid bilayer. CYP3A4 in this complex showed a nearly complete conversion from the low- to high-spin state when saturated with testosterone (TS) and no noticeable modulation due to the presence of cytochrome P450 reductase. Global analysis of equilibrium substrate binding and steady-state NADPH consumption kinetics provided precise resolution of the fractional contributions to turnover of CYP3A4 intermediates with one, two, or three TS molecules bound. The first binding event accelerates NADPH consumption but does not result in significant product formation due to essentially complete uncoupling. Binding of the second substrate molecule is critically important for catalysis, as the product formation rate reaches a maximum value with two TS molecules bound, whereas the third binding event significantly improves the coupling efficiency of redox equivalent usage with no further increase in product formation rate. The resolution of the fractional contributions of binding intermediates of CYP3A4 into experimentally observed overall spin shift and the rates of steady-state NADPH oxidation and product formation provide new detailed insight into the mechanisms of cooperativity and allosteric regulation in this human cytochrome P450.
引用
收藏
页码:7066 / 7076
页数:11
相关论文
共 50 条
  • [1] Kinetics and thermodynamics of ligand binding by cytochrome P450 3A4 and relevance to substrate cooperativity
    Isin, EM
    Guengerich, FP
    FASEB JOURNAL, 2006, 20 (04): : A458 - A458
  • [2] Cooperativity in oxidations catalyzed by cytochrome P450 3A4
    Ueng, YF
    Kuwabara, T
    Chun, YJ
    Guengerich, FP
    BIOCHEMISTRY, 1997, 36 (02) : 370 - 381
  • [3] Multiple substrate-binding sites are retained in cytochrome P450 3A4 mutants with decreased cooperativity
    Fernando, Harshica
    Rumfeldt, Jessica A. O.
    Davydova, Nadezhda Y.
    Halpert, James R.
    Davydov, Dmitri R.
    XENOBIOTICA, 2011, 41 (04) : 281 - 289
  • [4] The thermodynamic landscape of testosterone binding to cytochrome P450 3A4: Ligand binding and spin state equilibria
    Roberts, AG
    Campbell, AP
    Atkins, WM
    BIOCHEMISTRY, 2005, 44 (04) : 1353 - 1366
  • [5] Multiple substrate binding by cytochrome P450 3A4:: Estimation of the number of bound substrate molecules
    Kapelyukh, Yury
    Paine, Mark J. I.
    Marechal, Jean-Didier
    Sutcliffe, Michael J.
    Wolf, C. Roland
    Roberts, Gordon C. K.
    DRUG METABOLISM AND DISPOSITION, 2008, 36 (10) : 2136 - 2144
  • [6] Structures of cytochrome P450 3A4
    Scott, EE
    Halpert, JR
    TRENDS IN BIOCHEMICAL SCIENCES, 2005, 30 (01) : 5 - 7
  • [7] Mixing apples and oranges: Analysis of heterotropic cooperativity in cytochrome P450 3A4
    Frank, Daniel J.
    Denisov, Ilia G.
    Sligar, Stephen G.
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2009, 488 (02) : 146 - 152
  • [8] P450 3A4: Development of reconstituted systems, cooperativity, and ligand binding
    Hosea, NA
    Shaw, P
    Kuwabara, T
    Guengerich, FP
    FASEB JOURNAL, 1997, 11 (09): : A810 - A810
  • [9] Analysis of Heterotropic Cooperativity in Cytochrome P450 3A4 Using α-Naphthoflavone and Testosterone
    Frank, Daniel J.
    Denisov, Ilia G.
    Sligar, Stephen G.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (07) : 5540 - 5545
  • [10] Kinetics and thermodynamics of ligand binding by cytochrome P450 3A4
    Isin, EM
    Guengerich, FP
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (14) : 9127 - 9136