Promise and Frustration Machine Learning in Cardiology

被引:3
|
作者
Fornwalt, Brandon K. [1 ,2 ,3 ]
Pfeifer, John M. [1 ,4 ]
机构
[1] Geisinger, Dept Translat Data Sci & Informat, Danville, PA USA
[2] Geisinger, Dept Radiol, Danville, PA USA
[3] Geisinger, Heart Inst, Danville, PA USA
[4] Evangel Hosp, Heart & Vasc Ctr, Lewisburg, PA USA
关键词
echocardiography; deep learning; frustration; machine learning;
D O I
10.1161/CIRCIMAGING.121.012838
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
[No abstract available]
引用
收藏
页码:538 / 541
页数:4
相关论文
共 50 条
  • [31] THE PROMISE AND PITFALLS OF MACHINE LEARNING IN OCEAN REMOTE SENSING
    Gray, Patrick Clifton
    Boss, Emmanuel
    Prochaska, J. Xavier
    Kerner, Hannah
    Demeaux, Charlotte Begouen
    Lehahn, Yoav
    OCEANOGRAPHY, 2024, 37 (03) : 52 - 63
  • [32] Machine Learning in the Evaluation of Myocardial Ischemia Through Nuclear Cardiology
    Luis Eduardo Juarez-Orozco
    Octavio Martinez-Manzanera
    Andrea Ennio Storti
    Juhani Knuuti
    Current Cardiovascular Imaging Reports, 2019, 12
  • [33] Machine Learning in Electrocardiography and Echocardiography: Technological Advances in Clinical Cardiology
    Chang, Amanda
    Cadaret, Linda M.
    Liu, Kan
    CURRENT CARDIOLOGY REPORTS, 2020, 22 (12)
  • [34] Explainable machine learning predictions to support personalized cardiology strategies
    Loh, De Rong
    Yeo, Si Yong
    Tan, Ru San
    Gao, Fei
    Koh, Angela S.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2022, 3 (01): : 49 - 55
  • [35] Editorial: Non-linear analysis and machine learning in cardiology
    Dierckx, Hans
    Zhao, Xiaopeng
    Tolkacheva, Elena G.
    FRONTIERS IN PHYSIOLOGY, 2023, 14
  • [36] Machine Learning in the Evaluation of Myocardial Ischemia Through Nuclear Cardiology
    Juarez-Orozco, Luis Eduardo
    Martinez-Manzanera, Octavio
    Storti, Andrea Ennio
    Knuuti, Juhani
    CURRENT CARDIOVASCULAR IMAGING REPORTS, 2019, 12 (02)
  • [37] Machine Learning in Electrocardiography and Echocardiography: Technological Advances in Clinical Cardiology
    Amanda Chang
    Linda M. Cadaret
    Kan Liu
    Current Cardiology Reports, 2020, 22
  • [38] Implementing Machine Learning in Interventional Cardiology: The Benefits Are Worth the Trouble
    Ben Ali, Walid
    Pesaranghader, Ahmad
    Avram, Robert
    Overtchouk, Pavel
    Perrin, Nils
    Laffite, Stephane
    Cartier, Raymond
    Ibrahim, Reda
    Modine, Thomas
    Hussin, Julie G.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
  • [39] Generalisable sensor-free frustration detection in online learning environments using machine learning
    Rahman, Mohammad Mustaneer
    Ollington, Robert
    Yeom, Soonja
    Ollington, Nadia
    USER MODELING AND USER-ADAPTED INTERACTION, 2024, 34 (04) : 1493 - 1527
  • [40] The promise of automated machine learning for the genetic analysis of complex traits
    Manduchi, Elisabetta
    Romano, Joseph D.
    Moore, Jason H.
    HUMAN GENETICS, 2022, 141 (09) : 1529 - 1544