Dynamic correlations at different time-scales with empirical mode decomposition

被引:22
|
作者
Nava, Noemi [1 ,2 ]
Di Matteo, T. [1 ,2 ,3 ,4 ]
Aste, Tomaso [1 ,2 ]
机构
[1] UCL, Dept Comp Sci, Gower St, London WC1E 6BT, England
[2] London Sch Econ & Polit Sci, Syst Risk Ctr, London WC2A 2AE, England
[3] Kings Coll London, Dept Math, London WC2R 2LS, England
[4] Complex Sci Hub, Josefstaedter Str 39, A-1080 Vienna, Austria
关键词
Time-scale-dependent correlation; Time-dependent correlation; Empirical mode decomposition; DETRENDED FLUCTUATION ANALYSIS; WAVELET-TRANSFORM; RETURNS; NETWORKS;
D O I
10.1016/j.physa.2018.02.108
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a simple approach which combines Empirical Mode Decomposition (EMD) and Pearson's cross-correlations over rolling windows to quantify dynamic dependency at different time scales. The EMD is a tool to separate time series into implicit components which oscillate at different time-scales. We apply this decomposition to intraday time series of the following three financial indices: the S&P 500 (USA), the IPC (Mexico) and the VIX (volatility index USA), obtaining time-varying multidimensional cross-correlations at different time-scales. The correlations computed over a rolling window are compared across the three indices, across the components at different time-scales and across different time lags. We uncover a rich heterogeneity of interactions, which depends on the timescale and has important lead-lag relations that could have practical use for portfolio management, risk estimation and investment decisions. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:534 / 544
页数:11
相关论文
共 50 条
  • [41] Empirical mode decomposition analysis of two different financial time series and their comparison
    Guhathakurta, Kousik
    Mukherjee, Indranil
    Chowdhury, A. Roy
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 37 (04) : 1214 - 1227
  • [42] ASYMPTOTIC APPROXIMATIONS AND EXTENSION OF TIME-SCALES
    SANDERS, JA
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1980, 11 (04) : 758 - 770
  • [43] Quenching time-scales in the IllustrisTNG simulation
    Walters, Dan
    Woo, Joanna
    Ellison, Sara L.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 511 (04) : 6126 - 6142
  • [44] Exploding SNe with jets: time-scales
    Papish, Oded
    Soker, Noam
    [J]. DEATH OF MASSIVE STARS: SUPERNOVAE AND GAMMA-RAY BURSTS, 2012, (279): : 377 - 379
  • [45] Fractional and Time-Scales Differential Equations
    Baleanu, Dumitru
    Bhrawy, Ali H.
    Torres, Delfim F. M.
    Salahshour, Soheil
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [46] Short time-scales in the Kramers problem
    Soskin, SM
    Sheka, VI
    Linnik, TL
    Arrayás, M
    Kaufman, IK
    Luchinsky, DG
    McClintock, PVE
    Mannella, R
    [J]. UNSOLVED PROBLEMS OF NOISE AND FLUCTUATIONS, 2000, 511 : 503 - 508
  • [47] Dynamics and Time-scales in Breakup and Fusion
    Dasgupta, M.
    Luong, D. H.
    Hinde, D. J.
    Evers, M.
    Lin, C. J.
    du Rietz, R.
    [J]. 11TH INTERNATIONAL CONFERENCE ON NUCLEUS-NUCLEUS COLLISIONS (NN2012), 2013, 420
  • [48] Air quality services on climate time-scales for decision making: An empirical study of China
    Wan, Kai
    Shackley, Simon
    Doherty, Ruth M.
    Shi, Zongbo
    Zhang, Peiqun
    Glenk, Klaus
    Bo, Xin
    Chang, Luyu
    Feng, Zhiqiang
    Hewitt, Chris D.
    Wang, Qian
    Xu, Jianming
    Xu, Jun
    [J]. JOURNAL OF CLEANER PRODUCTION, 2021, 312
  • [49] Evolution time-scales in the hubble sequence
    Pfenniger, D
    [J]. XVTH IAP MEETING DYNAMICS OF GALAXIES: FROM THE EARLY UNIVERSE TO THE PRESENT, 2000, 197 : 413 - 420
  • [50] THE 2 TIME-SCALES OF THE SAWTEETH PRECURSORS
    ROGISTER, ALM
    SINGH, R
    KALECK, A
    [J]. NUCLEAR FUSION, 1989, 29 (07) : 1175 - 1180