Bayesian modeling of dynamic extreme values: extension of generalized extreme value distributions with latent stochastic processes

被引:9
|
作者
Nakajima, Jouchi [1 ]
Kunihama, Tsuyoshi [2 ]
Omori, Yasuhiro [3 ]
机构
[1] Bank Japan, Tokyo, Japan
[2] Nagoya Univ, Dept Econ, Nagoya, Aichi, Japan
[3] Univ Tokyo, Fac Econ, Tokyo, Japan
关键词
ARMA process; electricity demand; extreme values; generalized extreme value distribution; mixture sampler; stock returns; TIME-SERIES; SIMULATION SMOOTHER; MARGINAL LIKELIHOOD; VOLATILITY; SAMPLER;
D O I
10.1080/02664763.2016.1201796
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper develops Bayesian inference of extreme value models with a flexible time-dependent latent structure. The generalized extreme value distribution is utilized to incorporate state variables that follow an autoregressive moving average (ARMA) process with Gumbel-distributed innovations. The time-dependent extreme value distribution is combined with heavy-tailed error terms. An efficient Markov chain Monte Carlo algorithm is proposed using a state-space representation with a finite mixture of normal distributions to approximate the Gumbel distribution. The methodology is illustrated by simulated data and two different sets of real data. Monthly minima of daily returns of stock price index, and monthly maxima of hourly electricity demand are fit to the proposed model and used for model comparison. Estimation results show the usefulness of the proposed model and methodology, and provide evidence that the latent autoregressive process and heavy-tailed errors play an important role to describe the monthly series of minimum stock returns and maximum electricity demand.
引用
收藏
页码:1248 / 1268
页数:21
相关论文
共 50 条
  • [1] Error Structure of Metastatistical and Generalized Extreme Value Distributions for Modeling Extreme Rainfall in Austria
    Schellander, Harald
    Lieb, Alexander
    Hell, Tobias
    EARTH AND SPACE SCIENCE, 2019, 6 (09) : 1616 - 1632
  • [2] RECORD VALUES AND EXTREME VALUE DISTRIBUTIONS
    NAGARAJA, HN
    JOURNAL OF APPLIED PROBABILITY, 1982, 19 (01) : 233 - 239
  • [3] Stochastic ordering of extreme value distributions
    Wang, GH
    Lambert, JH
    Haimes, YY
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 1999, 29 (06): : 696 - 701
  • [4] Applying Stationary and Nonstationary Generalized Extreme Value Distributions in Modeling Annual Extreme Temperature Patterns
    Kyojo, Erick A.
    Osima, Sarah E.
    Mirau, Silas S.
    Masanja, Verdiana G.
    ADVANCES IN METEOROLOGY, 2024, 2024
  • [5] Bayesian inference for generalized extreme value distributions via Hamiltonian Monte Carlo
    Hartmann, Marcelo
    Ehlers, Ricardo S.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (07) : 5285 - 5302
  • [6] Bayesian inference for multivariate extreme value distributions
    Dombry, Clement
    Engelke, Sebastian
    Oesting, Marco
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 4813 - 4844
  • [7] Dynamic generalized extreme value modeling via particle filters
    Wei, Yonghua
    Huerta, Gabriel
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (08) : 6324 - 6341
  • [8] MODELING MULTIVARIATE EXTREME VALUE DISTRIBUTIONS
    TAWN, JA
    BIOMETRIKA, 1990, 77 (02) : 245 - 253
  • [9] Stochastic modeling of flood peaks using the generalized extreme value distribution
    Morrison, JE
    Smith, JA
    WATER RESOURCES RESEARCH, 2002, 38 (12) : 41 - 1
  • [10] EXTREME VALUES OF INDEPENDENT STOCHASTIC-PROCESSES
    BROWN, BM
    RESNICK, SI
    JOURNAL OF APPLIED PROBABILITY, 1977, 14 (04) : 732 - 739