Bayesian inference for generalized extreme value distributions via Hamiltonian Monte Carlo

被引:7
|
作者
Hartmann, Marcelo [1 ]
Ehlers, Ricardo S. [1 ]
机构
[1] Univ Sao Paulo, Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Bayesian approach; Extreme value; Hamiltonian Monte Carlo; Markov chain Monte Carlo; Riemann manifold;
D O I
10.1080/03610918.2016.1152365
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we propose to evaluate and compare Markov chain Monte Carlo (MCMC) methods to estimate the parameters in a generalized extreme value model. We employed the Bayesian approach using traditional Metropolis-Hastings methods, Hamiltonian Monte Carlo (HMC), and Riemann manifold HMC (RMHMC) methods to obtain the approximations to the posterior marginal distributions of interest. Applications to real datasets and simulation studies provide evidence that the extra analytical work involved in Hamiltonian Monte Carlo algorithms is compensated by a more efficient exploration of the parameter space.
引用
收藏
页码:5285 / 5302
页数:18
相关论文
共 50 条
  • [1] Bayesian inference for extreme value flood frequency analysis in Bangladesh using Hamiltonian Monte Carlo techniques
    Alam, Md Ashraful
    Farnham, Craig
    Emura, Kazuo
    [J]. INTERNATIONAL CONFERENCE ON ADVANCES IN CIVIL AND ENVIRONMENTAL ENGINEERING (ICANCEE 2018), 2019, 276
  • [2] Modified Hamiltonian Monte Carlo for Bayesian inference
    Radivojevic, Tijana
    Akhmatskaya, Elena
    [J]. STATISTICS AND COMPUTING, 2020, 30 (02) : 377 - 404
  • [3] Modified Hamiltonian Monte Carlo for Bayesian inference
    Tijana Radivojević
    Elena Akhmatskaya
    [J]. Statistics and Computing, 2020, 30 : 377 - 404
  • [4] Bayesian inference for multivariate extreme value distributions
    Dombry, Clement
    Engelke, Sebastian
    Oesting, Marco
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 4813 - 4844
  • [5] Stochastic gradient Hamiltonian Monte Carlo with variance reduction for Bayesian inference
    Zhize Li
    Tianyi Zhang
    Shuyu Cheng
    Jun Zhu
    Jian Li
    [J]. Machine Learning, 2019, 108 : 1701 - 1727
  • [6] Stochastic gradient Hamiltonian Monte Carlo with variance reduction for Bayesian inference
    Li, Zhize
    Zhang, Tianyi
    Cheng, Shuyu
    Zhu, Jun
    Li, Jian
    [J]. MACHINE LEARNING, 2019, 108 (8-9) : 1701 - 1727
  • [7] Bayesian inference for fitting cardiac models to experiments: estimating parameter distributions using Hamiltonian Monte Carlo and approximate Bayesian computation
    Alejandro Nieto Ramos
    Flavio H. Fenton
    Elizabeth M. Cherry
    [J]. Medical & Biological Engineering & Computing, 2023, 61 : 75 - 95
  • [8] Bayesian inference for fitting cardiac models to experiments: estimating parameter distributions using Hamiltonian Monte Carlo and approximate Bayesian computation
    Ramos, Alejandro Nieto
    Fenton, Flavio H.
    Cherry, Elizabeth M.
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2023, 61 (01) : 75 - 95
  • [9] Bayesian inference of a queueing system with short- or long-tailed distributions based on Hamiltonian Monte Carlo
    Alawamy, Eman Ahmed
    Liu, Yuanyuan
    Zhao, Yiqiang Q.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [10] Semi-Separable Hamiltonian Monte Carlo for Inference in Bayesian Hierarchical Models
    Zhang, Yichuan
    Sutton, Charles
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27