Approximating posterior distributions for mixture-model parameters

被引:0
|
作者
Center, JL [1 ]
机构
[1] Creat Res Corp, Andover, MA 01810 USA
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a fully-Bayesian approach to using mixture models in pattern classification problems. From a Bayesian point of view, classification should be done by integrating over the posterior distribution for the model parameters (including the number of components in the mixture) given previous observations. Although it is relatively easy to compute the value of the joint probability density of the observed data and a particular choice of model parameters, it is usually difficult to integrate over the whole distribution because of the high dimensionality of the parameter space. Most current methods using mixture models settle for finding a mode of the posterior distribution using the Expectation Maximization (EM) algorithm. But, much more can be learned about the posterior distribution. We explore the multi-state MCMC methods introduced by Skilling and show how these methods can be applied to Gaussian mixture models. In addition, we examine genetic algorithms, which are most often used as optimization algorithms. We show how these algorithms can be adapted to act as multi-state MCMC algorithms, as suggested by MacKay.
引用
收藏
页码:437 / 444
页数:8
相关论文
共 50 条
  • [41] On posterior contraction of parameters and interpretability in Bayesian mixture modeling
    Guha, Aritra
    Ho, Nhat
    Nguyen, Xuanlong
    [J]. BERNOULLI, 2021, 27 (04) : 2159 - 2188
  • [42] Approximating the Maximum of Gaussians by a Gaussian Mixture Model for Statistical Designs
    Azuma, Daiki
    Tsukiyama, Shuji
    Fukui, Masahiro
    [J]. 2017 EUROPEAN CONFERENCE ON CIRCUIT THEORY AND DESIGN (ECCTD), 2017,
  • [43] Optimizing the Estimation of a Histogram-Bin Width-Application to the Multivariate Mixture-Model Estimation
    Panic, Branislav
    Klemenc, Jernej
    Nagode, Marko
    [J]. MATHEMATICS, 2020, 8 (07)
  • [44] MAXIMUM-LIKELIHOOD ESTIMATES FOR THE PARAMETERS OF MIXTURE DISTRIBUTIONS
    LEYTHAM, KM
    [J]. WATER RESOURCES RESEARCH, 1984, 20 (07) : 896 - 902
  • [45] Alternative estimator for the parameters of a mixture of two binomial distributions
    Roberto da Costa Quinino
    Linda Lee Ho
    Emílio Suyama
    [J]. Statistical Papers, 2013, 54 : 47 - 69
  • [46] Vector Quantization of LSF Parameters With a Mixture of Dirichlet Distributions
    Ma, Zhanyu
    Leijon, Arne
    Kleijn, W. Bastiaan
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2013, 21 (09): : 1777 - 1790
  • [47] Alternative estimator for the parameters of a mixture of two binomial distributions
    Quinino, Roberto da Costa
    Ho, Linda Lee
    Suyama, Emilio
    [J]. STATISTICAL PAPERS, 2013, 54 (01) : 47 - 69
  • [48] ADAPTIVE ESTIMATES OF THE PARAMETERS OF A MIXTURE OF TWO SYMMETRIC DISTRIBUTIONS
    Sugakova, O.
    [J]. THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2010, 82 : 146 - 155
  • [49] ESTIMATE FOR EUCLIDEAN PARAMETERS OF A MIXTURE OF TWO SYMMETRIC DISTRIBUTIONS
    Maiboroda, R. E.
    Suhakova, O. V.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2010, 62 (07) : 1098 - 1108
  • [50] Mixture Distributions and the Construction of Reference Ranges for Biochemical parameters
    Kamal, Shahid
    Lawrence, Clive J.
    Trewin, Vivian F.
    Sekandar, Aisha
    [J]. PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2007, 3 (01) : 19 - 30