GLOBAL CONVERGENCE OF AN ISENTROPIC EULER-POISSON SYSTEM IN R+ x Rd

被引:0
|
作者
Tian, Huimin [1 ]
Peng, Yue-Jun [2 ]
Zhang, Lingling [1 ]
机构
[1] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Shanxi, Peoples R China
[2] Univ Clermont Auvergne, CNRS, Lab Math Blaise Pascal, F-63000 Clermont Ferrand, France
来源
基金
中国国家自然科学基金;
关键词
Euler-Poisson system; uniform global smooth solution; energy estimate; compactness and convergence; QUASI-NEUTRAL LIMIT; ELECTRON-MASS LIMIT; HYDRODYNAMIC MODEL; SMOOTH SOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the global-in-time convergence of an Euler-Poisson system near a constant equilibrium state in the whole space R-d, as physical parameters tend to zero. The result follows from the uniform global existence of smooth solutions by means of energy estimates together with compactness arguments. For this purpose, we establish uniform estimates for div u and curl u instead of del u.
引用
收藏
页码:710 / 726
页数:17
相关论文
共 50 条