GLOBAL CONVERGENCE OF AN ISENTROPIC EULER-POISSON SYSTEM IN R+ x Rd

被引:0
|
作者
Tian, Huimin [1 ]
Peng, Yue-Jun [2 ]
Zhang, Lingling [1 ]
机构
[1] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Shanxi, Peoples R China
[2] Univ Clermont Auvergne, CNRS, Lab Math Blaise Pascal, F-63000 Clermont Ferrand, France
来源
基金
中国国家自然科学基金;
关键词
Euler-Poisson system; uniform global smooth solution; energy estimate; compactness and convergence; QUASI-NEUTRAL LIMIT; ELECTRON-MASS LIMIT; HYDRODYNAMIC MODEL; SMOOTH SOLUTIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the global-in-time convergence of an Euler-Poisson system near a constant equilibrium state in the whole space R-d, as physical parameters tend to zero. The result follows from the uniform global existence of smooth solutions by means of energy estimates together with compactness arguments. For this purpose, we establish uniform estimates for div u and curl u instead of del u.
引用
收藏
页码:710 / 726
页数:17
相关论文
共 50 条
  • [1] Convergence of a non-isentropic Euler-Poisson system for all time
    Liu, Cunming
    Peng, Yue-Jun
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 119 : 255 - 279
  • [2] Global convergence of the Euler-Poisson system for ion dynamics
    Liu, Cunming
    Peng, Yue-jun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (04) : 1236 - 1248
  • [3] Global convergence of a two-fluid non-isentropic Euler-Poisson system in one space dimension
    Huang, Yangshe
    Liu, Cunming
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (12)
  • [4] Convergence of compressible Euler-Poisson system to incompressible Euler equations
    Wang, Shu
    Yang, Jianwei
    Luo, Dang
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (11) : 3408 - 3418
  • [5] LONG WAVELENGTH LIMIT OF NON-ISENTROPIC EULER-POISSON SYSTEM
    Zhao, Lixian
    Yang, Xiongfeng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, : 3547 - 3571
  • [6] A Class of Global Solutions to the Euler-Poisson System
    Hadzic, Mahir
    Jang, J. Juhi
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 370 (02) : 475 - 505
  • [7] GLOBAL CONVERGENCE IN INFINITY-ION-MASS LIMITS FOR BIPOLAR EULER-POISSON SYSTEM
    Li, Yachun
    Wang, Shihao
    Zhao, Liang
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2025, 23 (01) : 85 - 107
  • [8] Global zero-relaxation limit of the non-isentropic Euler-Poisson system for ion dynamics
    Feng, Yuehong
    Li, Xin
    Wang, Shu
    ASYMPTOTIC ANALYSIS, 2020, 120 (3-4) : 301 - 318
  • [9] Global Smooth Ion Dynamics in the Euler-Poisson System
    Guo, Yan
    Pausader, Benoit
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 303 (01) : 89 - 125
  • [10] Non-isentropic multi-transonic solutions of Euler-Poisson system
    Duan, Ben
    Zhou, Yan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (11) : 7029 - 7046