On the Hardy-Littlewood majorant problem

被引:9
|
作者
Green, B [1 ]
Ruzsa, IZ
机构
[1] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England
[2] Alfred Renyi Inst, Budapest, Hungary
关键词
D O I
10.1017/S0305004104007911
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Lambda subset of or equal to {1,...,N} and let {a(n)}(nis an element ofLambda) be a sequence with \a(n)\ less than or equal to 1 for all n. It is easy to see that parallel toSigma(nis an element ofLambda) a(n)e(ntheta)parallel to(p) less than or equal to parallel toSigma(nis an element ofLambda) e(ntheta)parallel to(p) for every even integer p. We give an example which shows that this statement can fall rather dramatically when p is not an even integer. This answers in the negative a question known as the Hardy-Littlewood majorant conjecture, thereby ruling out a certain approach to the restriction and Kakeya families of conjectures.
引用
收藏
页码:511 / 517
页数:7
相关论文
共 50 条
  • [41] Note on Hardy-Littlewood Maximal Function
    Chen Liyuan(Dept.of Economic. Hangzou University
    数学研究与评论, 1995, (01) : 40 - 40
  • [42] A HARDY-LITTLEWOOD THEOREM FOR BERGMAN SPACES
    Bao, Guanlong
    Wulan, Hasi
    Zhu, Kehe
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 : 807 - 821
  • [43] An extension of the Hardy-Littlewood strong law
    Bai, ZD
    Cheng, PE
    Zhang, CH
    STATISTICA SINICA, 1997, 7 (04) : 923 - 928
  • [44] LIPSCHITZ CLASSES AND THE HARDY-LITTLEWOOD PROPERTY
    ASTALA, K
    HAG, K
    HAG, P
    LAPPALAINEN, V
    MONATSHEFTE FUR MATHEMATIK, 1993, 115 (04): : 267 - 279
  • [45] HARDY-LITTLEWOOD THEORY ON UNIMODULAR GROUPS
    VAROPOULOS, NT
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1995, 31 (04): : 669 - 688
  • [46] Local Hardy-Littlewood maximal operator
    Lin, Chin-Cheng
    Stempak, Krzysztof
    MATHEMATISCHE ANNALEN, 2010, 348 (04) : 797 - 813
  • [47] The Hardy-Littlewood conjecture and rational points
    Harpaz, Yonatan
    Skorobogatov, Alexei N.
    Wittenberg, Olivier
    COMPOSITIO MATHEMATICA, 2014, 150 (12) : 2095 - 2111
  • [48] Remarks on the Hardy-Littlewood maximal function
    Aldaz, JM
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 : 1 - 9
  • [49] EIGENFUNCTIONS OF THE HARDY-LITTLEWOOD MAXIMAL OPERATOR
    Colzani, Leonardo
    Perez Lazaro, Javier
    COLLOQUIUM MATHEMATICUM, 2010, 118 (02) : 379 - 389
  • [50] A RETURN TO THE HARDY-LITTLEWOOD INTEGRAL INEQUALITY
    EVANS, WD
    EVERITT, WN
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 380 (1779): : 447 - 486