Product Kernel Interpolation for Scalable Gaussian Processes

被引:0
|
作者
Gardner, Jacob R. [1 ]
Pleiss, Geoff [1 ]
Wu, Ruihan [1 ,2 ]
Weinberger, Kilian Q. [1 ]
Wilson, Andrew Gordon [1 ]
机构
[1] Cornell Univ, Ithaca, NY 14853 USA
[2] Tsinghua Univ, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
ESTIMATOR; MATRIX;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent work shows that inference for Gaussian processes can be performed efficiently using iterative methods that rely only on matrix-vector multiplications (MVMs). Structured Kernel Interpolation (SKI) exploits these techniques by deriving approximate kernels with very fast MVMs. Unfortunately, such strategies suffer badly from the curse of dimensionality. We develop a new technique for MVM based learning that exploits product kernel structure. We demonstrate that this technique is broadly applicable, resulting in linear rather than exponential runtime with dimension for SKI, as well as state-of-the-art asymptotic complexity for multi-task GPs.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Scalable Deep Kernel Gaussian Process for Vehicle Dynamics in Autonomous Racing
    Ning, Jingyun
    Behl, Madhur
    [J]. CONFERENCE ON ROBOT LEARNING, VOL 229, 2023, 229
  • [22] Scalable and efficient learning from crowds with Gaussian processes
    Morales-Alvarez, Pablo
    Ruiz, Pablo
    Santos-Rodriguez, Raul
    Molina, Rafael
    Katsaggelos, Aggelos K.
    [J]. INFORMATION FUSION, 2019, 52 : 110 - 127
  • [23] SCALABLE HIERARCHICAL MIXTURE OF GAUSSIAN PROCESSES FOR PATTERN CLASSIFICATION
    Nguyen, T. N. A.
    Bouzerdoum, A.
    Phung, S. L.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2466 - 2470
  • [24] Modulating scalable Gaussian processes for expressive statistical learning
    Liu, Haitao
    Ong, Yew-Soon
    Jiang, Xiaomo
    Wang, Xiaofang
    [J]. PATTERN RECOGNITION, 2021, 120
  • [25] Scalable Gaussian Processes for Characterizing Multidimensional Change Surfaces
    Herlands, William
    Wilson, Andrew
    Nickisch, Hannes
    Flaxman, Seth
    Neill, Daniel
    van Panhuis, Wilbert
    Xing, Eric
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 51, 2016, 51 : 1013 - 1021
  • [26] Band-Limited Gaussian Processes: The Sinc Kernel
    Tobar, Felipe
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [27] Asymmetric kernel in Gaussian Processes for learning target variance
    Pintea, S. L.
    van Gemert, J. C.
    Smeulders, A. W. M.
    [J]. PATTERN RECOGNITION LETTERS, 2018, 108 : 70 - 77
  • [28] Tensor-Train Kernel Learning for Gaussian Processes
    Kirstein, Max
    Sommer, David
    Eigel, Martin
    [J]. CONFORMAL AND PROBABILISTIC PREDICTION WITH APPLICATIONS, VOL 179, 2022, 179
  • [29] Gaussian Processes on Graphs Via Spectral Kernel Learning
    Zhi, Yin-Cong
    Ng, Yin Cheng
    Dong, Xiaowen
    [J]. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2023, 9 : 304 - 314
  • [30] Automated Kernel Search for Gaussian Processes on Data Streams
    Huewel, Jan David
    Berns, Fabian
    Beecks, Christian
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3584 - 3588