Non-constant positive steady states of the Sel'kov model

被引:128
|
作者
Wang, MX [1 ]
机构
[1] SE Univ, Dept Math, Nanjing 210018, Peoples R China
关键词
Sel'kov model; non-constant positive steady states; bifurcation; global existence;
D O I
10.1016/S0022-0396(02)00100-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the reaction-diffusion system known as the Sel'kov model with the homogeneous Neumann boundary condition. This model has been applied to various problems in chemistry and biology. We first give a priori estimates (positive upper and lower bounds) of positive steady states, and then study the non-existence, bifurcation and global existence of non-constant positive steady states as the parameters lambda and theta are varied. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:600 / 620
页数:21
相关论文
共 50 条
  • [41] NON-CONSTANT GAMMA
    STIGTER, CJ
    JOURNAL OF APPLIED METEOROLOGY, 1976, 15 (12): : 1326 - 1327
  • [42] Analysis of a Solute Transport Model with Non-constant Dispersion
    Ntsime, Basetsana P.
    Moitsheki, Raseelo J.
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116
  • [43] On Model Evaluation Under Non-constant Class Imbalance
    Brabec, Jan
    Komarek, Tomas
    Franc, Vojtech
    Machlica, Lukas
    COMPUTATIONAL SCIENCE - ICCS 2020, PT IV, 2020, 12140 : 74 - 87
  • [44] STEADY-STATE SOLUTIONS FOR A ONE-DIMENSIONAL NONISENTROPIC HYDRODYNAMIC MODEL WITH NON-CONSTANT LATTICE TEMPERATURE
    黎野平
    Acta Mathematica Scientia, 2008, (03) : 479 - 488
  • [45] Steady-state solutions for a one-dimensional nonisentropic hydrodynamic model with non-constant lattice temperature
    Li Yeping
    ACTA MATHEMATICA SCIENTIA, 2008, 28 (03) : 479 - 488
  • [46] Soliton with non-constant velocity
    Zenchuk, AI
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2003, 62 (1-2) : 191 - 201
  • [47] ON LOCALLY NON-CONSTANT MAPPINGS
    OMILJANOWSKI, K
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1985, 4A (01): : 119 - 122
  • [48] Stability of constant steady states of a chemotaxis model
    Szymon Cygan
    Grzegorz Karch
    Krzysztof Krawczyk
    Hiroshi Wakui
    Journal of Evolution Equations, 2021, 21 : 4873 - 4896
  • [49] MODIFIED CABLE MODEL FOR NEURON PROCESSES WITH NON-CONSTANT DIAMETERS
    STRAIN, GM
    BROCKMAN, WH
    JOURNAL OF THEORETICAL BIOLOGY, 1975, 51 (02) : 475 - 494
  • [50] Stability of constant steady states of a chemotaxis model
    Cygan, Szymon
    Karch, Grzegorz
    Krawczyk, Krzysztof
    Wakui, Hiroshi
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (04) : 4873 - 4896