Non-constant positive steady states of the Sel'kov model

被引:128
|
作者
Wang, MX [1 ]
机构
[1] SE Univ, Dept Math, Nanjing 210018, Peoples R China
关键词
Sel'kov model; non-constant positive steady states; bifurcation; global existence;
D O I
10.1016/S0022-0396(02)00100-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the reaction-diffusion system known as the Sel'kov model with the homogeneous Neumann boundary condition. This model has been applied to various problems in chemistry and biology. We first give a priori estimates (positive upper and lower bounds) of positive steady states, and then study the non-existence, bifurcation and global existence of non-constant positive steady states as the parameters lambda and theta are varied. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:600 / 620
页数:21
相关论文
共 50 条
  • [1] Qualitative analysis of steady states to the Sel'kov model
    Peng, Rui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 241 (02) : 386 - 398
  • [2] Positive steady-state solutions of the Sel'kov model
    Peng, Rui
    Wang, Mingxin
    Yang, Ming
    MATHEMATICAL AND COMPUTER MODELLING, 2006, 44 (9-10) : 945 - 951
  • [3] Existence and bifurcation of non-constant positive steady states for a tumor–immune model
    Jingjing Wang
    Hongchan Zheng
    Yunfeng Jia
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [4] Non-constant Positive Steady States of the Epidemic Model with Non-monotonic Incidence Rate
    Shu-ling ZHA
    Bing-fang LI
    Xiu-xiang YANG
    Gai-zhu QU
    Acta Mathematicae Applicatae Sinica, 2015, 31 (03) : 783 - 798
  • [5] Non-constant Positive Steady States of the Epidemic Model with Non-monotonic Incidence Rate
    Zha, Shu-ling
    Li, Bing-fang
    Yang, Xiu-xiang
    Qu, Gai-zhu
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2015, 31 (03): : 783 - 798
  • [6] Non-constant positive steady states of the epidemic model with non-monotonic incidence rate
    Shu-ling Zha
    Bing-fang Li
    Xiu-xiang Yang
    Gai-zhu Qu
    Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 783 - 798
  • [7] Non-constant positive steady-states of a predator-prey-mutualist model
    Chen, WY
    Wang, MX
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2004, 25 (02) : 243 - 254
  • [8] NON-CONSTANT POSITIVE STEADY-STATES OF A PREDATOR-PREY-MUTUALIST MODEL
    CHEN WENYAN WANG MINGXIN Department of Mathematics
    ChineseAnnalsofMathematics, 2004, (02) : 243 - 254
  • [9] Existence and bifurcation of non-constant positive steady states for a tumor-immune model
    Wang, Jingjing
    Zheng, Hongchan
    Jia, Yunfeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):
  • [10] Dynamics of Nonconstant Steady States of the Sel’kov Model with Saturation Effect
    Zengji Du
    Xiaoni Zhang
    Huaiping Zhu
    Journal of Nonlinear Science, 2020, 30 : 1553 - 1577