Mapping land cover from detailed aerial photography data using textural and neural network analysis

被引:18
|
作者
Cots-Folch, R.
Aitkenhead, M. J.
Martinez-Casasnovas, J. A.
机构
[1] Univ Lleida, Dept Soil & Environm Sci, E-25198 Lleida, Spain
[2] Univ Aberdeen, Dept Plant & Soil Sci, Aberdeen AB24 3UU, Scotland
关键词
D O I
10.1080/01431160600887722
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Automated mapping of land cover using black and white aerial photographs, as an alternative method to traditional photo-interpretation, requires using methods other than spectral analysis classification. To this end, textural measurements have been shown to be useful indicators of land cover. In this work, a neural network model is proposed and tested to map historical land use/land cover (LUC) from very detailed panchromatic aerial photographs (5 m resolution) using textural measurements. The method is used to identify different land use and management types (e.g. traditional versus mechanized vineyard systems). These have been tested with known ground reference data. The results show the potential of the methodology to obtain automatic, historic, and very detailed cartography information from a complex landscape such as the mountainous and Mediterranean region to which it is applied here, and the advantages that this method has over traditional methods.
引用
收藏
页码:1625 / 1642
页数:18
相关论文
共 50 条
  • [21] Land Cover and Soil Type Mapping From Spaceborne PolSAR Data at L-Band With Probabilistic Neural Network
    Antropov, Oleg
    Rauste, Yrjo
    Astola, Heikki
    Praks, Jaan
    Hame, Tuomas
    Hallikainen, Martti T.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (09): : 5256 - 5270
  • [22] Land Cover Classification Using High-Resolution Aerial Photography in Adventdalen, Svalbard
    Mora, Carla
    Vieira, Goncalo
    Pina, Pedro
    Lousada, Maura
    Christiansen, Hanne H.
    [J]. GEOGRAFISKA ANNALER SERIES A-PHYSICAL GEOGRAPHY, 2015, 97 (03) : 473 - 488
  • [23] OBJECT-BASED ANALYSIS OF AERIAL PHOTOGRAMMETRIC POINT CLOUD AND SPECTRAL DATA FOR LAND COVER MAPPING
    Debella-Gilo, M.
    Bjorkelo, K.
    Breidenbach, J.
    Rahlf, J.
    [J]. ISPRS HANNOVER WORKSHOP 2013, 2013, 40-1 (W-1): : 63 - 67
  • [24] Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping
    Potapov, Peter
    Hansen, Matthew C.
    Kommareddy, Indrani
    Kommareddy, Anil
    Turubanova, Svetlana
    Pickens, Amy
    Adusei, Bernard
    Tyukavina, Alexandra
    Ying, Qing
    [J]. REMOTE SENSING, 2020, 12 (03)
  • [25] Integrating Convolutional Neural Network and Multiresolution Segmentation for Land Cover and Land Use Mapping Using Satellite Imagery
    Atik, Saziye Ozge
    Ipbuker, Cengizhan
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (12):
  • [26] Ensemble of artificial neural network based land cover classifiers using satellite data
    Mackin, Kenneth J.
    Yamaguchi, Takashi
    Nunohiro, Eiji
    Park, Jong Geol
    Hara, Keitaro
    Matsushita, Kotaro
    Ohshiro, Masanori
    Yamasaki, Kazuko
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 3185 - +
  • [27] Land cover mapping from remote sensing data
    Lim, H. S.
    MatJafri, M. Z.
    Abdullah, K.
    Saleh, N. M.
    Wong, C. J.
    AlSultan, Sultan
    [J]. OPTICAL PATTERN RECOGNITON XVII, 2006, 6245
  • [28] Superresolution Land Cover Mapping Using a Generative Adversarial Network
    Shang, Cheng
    Li, Xiaodong
    Foody, Giles M.
    Du, Yun
    Ling, Feng
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [29] MODELING AND SIMULATING LAND USE/COVER CHANGE USING ARTIFICIAL NEURAL NETWORK FROM REMOTELY SENSING DATA
    Bugday, Ender
    Bugday, Seda Erkan
    [J]. CERNE, 2019, 25 (02) : 246 - 254
  • [30] Land cover classification from MODIS EVI times-series data using SOM neural network
    Bagan, H
    Wang, QX
    Watanabe, M
    Yang, YH
    Ma, JW
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (22) : 4999 - 5012