Weighted inequalities for Hardy-Steklov operators

被引:5
|
作者
Bernardis, A. L.
Martin-Reyes, F. J.
Salvador, P. Ortega
机构
[1] Consejo Nacl Invest Cient & Tecn, IMAL, RA-3000 Santa Fe, Argentina
[2] Univ Malaga, Fac Ciencias, E-29071 Malaga, Spain
关键词
Hardy-Steklov operator; weights; inequalities;
D O I
10.4153/CJM-2007-011-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize the pairs of weights (v, w) for which the operator Tf (x) = g(x) integral(h(x))(s(x)) f with s and h increasing and continuous functions is of strong type (p, q) or weak type (p, q) with respect to the pair (v, w) in the case 0 < q < p and 1 < p < infinity. The result for the weak type is new while the characterizations for the strong type improve the ones given by H. P. Heinig and G. Sinnamon. In particular, we do not assume differentiabflity properties on s and h and we obtain that the strong type inequality (p, q), q < p, is characterized by the fact that the function Phi(x) = sup [GRAPHICS] belongs to L-r(g(q)w), where 1/r = 1/q - 1/p and the supremum is taken over all c and d such that c <= x <= d and s(d) <= h(c).
引用
收藏
页码:276 / 295
页数:20
相关论文
共 50 条
  • [31] Norm Inequalities for Composition Operators on Hardy and Weighted Bergman Spaces
    Hammond, Christopher
    Patton, Linda J.
    TOPICS IN OPERATOR THEORY: OPERATORS, MATRICES AND ANALYTIC FUNCTIONS, VOL 1, 2010, 202 : 265 - +
  • [32] Weighted Hardy's inequalities and Kolmogorov-type operators
    Canale, A.
    Gregorio, F.
    Rhandi, A.
    Tacelli, C.
    APPLICABLE ANALYSIS, 2019, 98 (07) : 1236 - 1254
  • [33] Weighted weak-type inequalities for generalized Hardy operators
    A. L. Bernardis
    F. J. Martín-Reyes
    P. Ortega Salvador
    Journal of Inequalities and Applications, 2006
  • [34] ON MODULAR INEQUALITIES FOR GENERALIZED HARDY OPERATORS ON WEIGHTED ORLICZ SPACES
    Mohammad, Kh A.
    EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (03): : 19 - 28
  • [35] Weighted weak-type inequalities for generalized hardy operators
    Bernardis, A. L.
    Martin-Reyes, F. J.
    Salvador, P. Ortega
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2006, 2006 (1)
  • [36] Weighted norm inequalities for Hardy type operators on monotone functions
    Jain, Pankaj
    Singh, Monika
    Singh, Arun Pal
    FUNCTION SPACES IN ANALYSIS, 2015, 645 : 145 - 160
  • [37] Weighted inequalities for Hardy-type operators involving suprema
    Gogatishvili, Amiran
    Opic, Bohumira
    Pick, Lubos
    COLLECTANEA MATHEMATICA, 2006, 57 (03) : 227 - 255
  • [38] Hardy–Steklov Integral Operators: Part I
    D. V. Prokhorov
    V. D. Stepanov
    E. P. Ushakova
    Proceedings of the Steklov Institute of Mathematics, 2018, 300 : 1 - 112
  • [39] Hardy–Steklov Integral Operators: Part II
    D. V. Prokhorov
    V. D. Stepanov
    E. P. Ushakova
    Proceedings of the Steklov Institute of Mathematics, 2018, 302 : 1 - 61
  • [40] Weighted hardy inequalities
    Edmunds, DE
    Hurri-Syrjänen, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 310 (02) : 424 - 435