Free isometric actions on the affine space Qn

被引:0
|
作者
Kenzi, S [1 ]
机构
[1] Tamagawa Univ, Dept Math, Fac Engn, Machida, Tokyo 1948610, Japan
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2002年 / 13卷 / 03期
关键词
D O I
10.1016/S0019-3577(02)80017-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We will show that for every integer n greater than or equal to 3 there exists a free non-abelian group of linear isometrics of the vector space Q(n) such that any subgroup fixing any point (mu) over right arrow not equal (0) over right arrow of Q(n) is cyclic. Recall that two elements of F-2 commute if and only if they belong to a cyclic subgroup of F-2.
引用
收藏
页码:389 / 405
页数:17
相关论文
共 50 条