Torsion-free Aluffi algebras

被引:2
|
作者
Nejad, Abbas Nasrollah [1 ,2 ]
Shahidi, Zahra [1 ]
Zaare-Nahandi, Rashid [1 ]
机构
[1] IASBS, Dept Math, Zanjan 4513766731, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
关键词
Aluffi algebra; Aluffi torsion-free ideal; Blowup algebra; Associated graded ring;
D O I
10.1016/j.jalgebra.2018.07.024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A pair of ideals J subset of I subset of R has been called Aluffi torsion-free if the Aluffi algebra of I/J is isomorphic to the corresponding Rees algebra. We give necessary and sufficient conditions for the Aluffi torsion-free property in terms of the first syzygy module of the form ideal J* in the associated graded ring of I. For two pairs of ideals J(1), J(2) subset of I such that J(1) - J(2) epsilon I-2 , we prove that if one pair is Aluffi torsion-free the other one is so if and only if the first syzygy modules of J(1) and J(2) have the same form ideals. We introduce the notion of strongly Aluffi torsion-free ideals and present some results on these ideals. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:190 / 207
页数:18
相关论文
共 50 条
  • [31] ON THE RINGS ON TORSION-FREE GROUPS
    Karimi, F.
    Mohtadifar, H.
    MATEMATICKI VESNIK, 2013, 65 (03): : 326 - 333
  • [32] A MODULE AS A TORSION-FREE COVER
    HUTCHINSON, JJ
    TEPLY, ML
    ISRAEL JOURNAL OF MATHEMATICS, 1983, 46 (04) : 305 - 312
  • [33] ON SPECIAL TORSION-FREE GROUPS
    MACHI, A
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1969, 47 (06): : 453 - &
  • [34] On torsion-free Crawley groups
    Corner, A. L. S.
    Goebel, R.
    Goldsmith, B.
    QUARTERLY JOURNAL OF MATHEMATICS, 2006, 57 : 183 - 192
  • [35] SEMISIMPLE AND TORSION-FREE CLASSES
    VANLEEUWEN, LCA
    WIEGANDT, R
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1981, 38 (1-4): : 73 - 81
  • [36] QUASIRELATIONS ON TORSION-FREE MODULES
    SWOKOWSK.EW
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 128 - &
  • [37] TORSION-FREE NILPOTENT VARIETIES
    LEVIN, F
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1973, 26 (5-6) : 757 - 765
  • [38] ABSOLUTELY TORSION-FREE RINGS
    RUBIN, RA
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 78 (05) : 854 - &
  • [39] ABSOLUTELY TORSION-FREE RINGS
    VIOLAPRIOLI, J
    PACIFIC JOURNAL OF MATHEMATICS, 1975, 56 (01) : 275 - 283
  • [40] ON TORSION-FREE NILPOTENT LOOPS
    Mostovoy, Jacob
    Perez-Izquierdo, Jose M.
    Shestakov, Ivan P.
    QUARTERLY JOURNAL OF MATHEMATICS, 2019, 70 (03): : 1091 - 1104