Lattice contraction due to boron doping in silicon

被引:9
|
作者
Boureau, Victor [1 ,2 ,3 ]
Hartmann, Jean Michel [4 ]
Claverie, Alain [1 ,2 ]
机构
[1] CEMES CNRS, 29 Rue Jeanne Marvig, F-31055 Toulouse, France
[2] Univ Toulouse, 29 Rue Jeanne Marvig, F-31055 Toulouse, France
[3] STMicroelectronics, 850 Rue Jean Monnet, F-38920 Crolles, France
[4] Univ Grenoble Alpes, CEA, LETI, F-38000 Grenoble, France
关键词
DOPED SILICON; SI; PARAMETER; STRAIN; PHOSPHORUS; CRYSTALS; MOSFETS;
D O I
10.1016/j.mssp.2018.07.011
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In modern electronic devices, strain is used to increase carrier mobility. It is thus mandatory to know precisely the effect of doping on the lattice parameter of silicon. However, there are many experimental biases which prevent one from measuring this effect with high accuracy. For this reason, we have designed and fabricated a step-like structure consisting of five 50 nm-thick Si layers of increasing substitutional boron concentrations. Then, we have used Dark Field Electron Holography, a Transmission Electron Microscopy based technique, to measure the strain in these pseudomorphic and defect-free layers. Using Finite Element Modelling, we show that the observed out-of-plane strains can be reproduced by assuming that the expansion coefficient of boron is about - 6.5 x 10(-24) cm(3). This value is slightly larger (in absolute value) than those previously reported. It is otherwise about 20% larger than predicted from the size mismatch between B and Si atoms.
引用
下载
收藏
页码:65 / 68
页数:4
相关论文
共 50 条
  • [31] BORON DOPING OF SILICON USING EXCIMER LASERS
    SLAOUI, A
    FOULON, F
    BIANCONI, M
    CORRERA, L
    NIPOTI, R
    STUCK, R
    UNAMUNO, S
    FOGARASSY, E
    NICOLETTI, S
    LASER- AND PARTICLE-BEAM CHEMICAL PROCESSES ON SURFACES, 1989, 129 : 591 - 596
  • [32] LATTICE LOCATION OF BORON IONS IMPLANTED INTO SILICON
    FLADDA, G
    BJORKQVIST, K
    ERIKSSON, L
    SIGURD, D
    APPLIED PHYSICS LETTERS, 1970, 16 (08) : 313 - +
  • [33] LATTICE CONTRACTION DUE TO QUENCHING IN VACANCIES IN PLATINUM AND GOLD
    HERTZ, W
    WAIDELICH, W
    PEISL, H
    PHYSICS LETTERS A, 1973, A 43 (03) : 289 - 290
  • [34] Doping and characterization of boron atoms in nanocrystalline silicon particles
    Sato, Keisuke
    Fukata, Naoki
    Hirakuri, Kenji
    APPLIED PHYSICS LETTERS, 2009, 94 (16)
  • [35] EVALUATION OF BORON AND PHOSPHORUS DOPING MICROCRYSTALLINE SILICON FILMS
    KAYA, H
    IMURA, T
    KUSAO, T
    HIRAKI, A
    NAKAMURA, O
    OKAYASU, Y
    MATSUMURA, M
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1984, 23 (08): : L549 - L551
  • [36] BORON DOPING OF SILICON FLOAT ZONE (FZ) CRYSTALS
    BORLE, WN
    NANGIA, OP
    BAL, M
    INDIAN JOURNAL OF TECHNOLOGY, 1976, 14 (02): : 83 - 85
  • [37] THE DOPING OF SILICON WITH BORON BY RAPID THERMAL-PROCESSING
    DESOUZA, JP
    HASENACK, CM
    SWART, JE
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1988, 3 (04) : 277 - 280
  • [38] BORON EVAPORATOR FOR DOPING SILICON THIN-FILMS
    DENHOFF, MW
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1990, 8 (05): : 1035 - 1037
  • [39] Boron doping of silicon by plasma source ion implantation
    Matyi, RJ
    Chapek, DL
    Brunco, DP
    Felch, SB
    Lee, BS
    SURFACE & COATINGS TECHNOLOGY, 1997, 93 (2-3): : 247 - 253
  • [40] Boron doping of silicon rich carbides: Electrical properties
    Summonte, C.
    Canino, M.
    Allegrezza, M.
    Bellettato, M.
    Desalvo, A.
    Shukla, R.
    Jain, I. P.
    Crupi, I.
    Milita, S.
    Ortolani, L.
    Lopez-Conesa, L.
    Estrade, S.
    Peiro, F.
    Garrido, B.
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2013, 178 (09): : 551 - 558