Deep Reinforcement Learning Based Latency Minimization for Mobile Edge Computing With Virtualization in Maritime UAV Communication Network

被引:101
|
作者
Liu, Ying [1 ]
Yan, Junjie [1 ]
Zhao, Xiaohui [1 ]
机构
[1] Jilin Univ, Coll Commun Engn, Changchun 130012, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Trajectory; Maritime communications; Servers; Resource management; Parallel processing; Optimization; Maritime communication; deep reinforcement learning (DRL); latency minimization; UAV trajectory design; mobile edge computing (MEC); virtual machine (VM); ENERGY-EFFICIENT; RESOURCE-ALLOCATION; TRAJECTORY DESIGN; MANAGEMENT; COVERAGE; QOS;
D O I
10.1109/TVT.2022.3141799
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The rapid development of maritime activities has led to the emergence of more and more computation-intensive applications. In order to meet the huge demand for wireless communications in maritime environment, mobile edge computing (MEC) is considered as an effective solution to provide powerful computing capabilities for maritime terminals of resource scarcity or latency sensitive. A basic technology to implement MEC is virtual machine (VM) multiplexing, through which multi-task parallel computing on a server is realized. In this paper, a two-layer unmanned aerial vehicles (UAVs) maritime communication network with a centralized top-UAV (T-UAV) and a group of distributed bottom-UAVs (B-UAVs) is established and MEC is used on T-UAV. We aim to solve the latency minimization problem for both communication and computation in this maritime UAV swarm mobile edge computing network. We reformulate this problem into a Markov decision process (MDP), since it is a non-convex and multiply constrained but has the characteristics of MDP. Based on this MDP model, we take deep reinforcement learning (DRL) as our tool to propose a deep Q-network (DQN) and a deep deterministic policy gradient (DDPG) algorithms to optimize the trajectory of T-UAV and configuration of virtual machines (VMs). Using these two proposed algorithms, we can minimize the system latency. Simulation results show that the given solutions are valid and effective.
引用
收藏
页码:4225 / 4236
页数:12
相关论文
共 50 条
  • [41] Task offloading of edge computing network based on Lyapunov and deep reinforcement learning
    Qiao, Xudong
    Zhou, Yongxin
    2024 9TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS, ICCCS 2024, 2024, : 1054 - 1059
  • [42] UAV-IRS-assisted energy harvesting for edge computing based on deep reinforcement learning
    Pang, Shanchen
    Wang, Luqi
    Gui, Haiyuan
    Qiao, Sibo
    He, Xiao
    Zhao, Zhiyuan
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2025, 163
  • [43] Deep Reinforcement Learning based Path Planning for UAV-assisted Edge Computing Networks
    Peng, Yingsheng
    Liu, Yong
    Zhang, Han
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [44] Smart collaborative optimizations strategy for mobile edge computing based on deep reinforcement learning
    Fang, Juan
    Zhang, Mengyuan
    Ye, Zhiyuan
    Shi, Jiamei
    Wei, Jianhua
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 96
  • [45] A Novel Deep Reinforcement Learning based service migration model for Mobile Edge Computing
    Park, Sung Woon
    Boukerche, Azzedine
    Guan, Shichao
    PROCEEDINGS OF THE 2020 IEEE/ACM 24TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED SIMULATION AND REAL TIME APPLICATIONS (DS-RT), 2020, : 84 - 91
  • [46] Deep Reinforcement Learning-Based Task Assignment for Cooperative Mobile Edge Computing
    Hsieh, Li-Tse
    Liu, Hang
    Guo, Yang
    Gazda, Robert
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (04) : 3156 - 3171
  • [47] Sharding for Blockchain based Mobile Edge Computing System: A Deep Reinforcement Learning Approach
    Yuan, Shijing
    Li, Jie
    Liang, Jinghao
    Zhu, Yuxuan
    Yu, Xiang
    Chen, Jianping
    Wu, Chentao
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [48] Age-Based Scheduling for Mobile Edge Computing: A Deep Reinforcement Learning Approach
    He, Xingqiu
    You, Chaoqun
    Quek, Tony Q. S.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (10) : 9881 - 9897
  • [49] Deep Reinforcement Learning Based Offloading for Mobile Edge Computing with General Task Graph
    Yan, Jia
    Bi, Suzhi
    Huang, Liang
    Zhang, Ying-Jun Angela
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [50] Deep Reinforcement Learning-Based Offloading Decision Optimization in Mobile Edge Computing
    Zhang, Hao
    Wu, Wenjun
    Wang, Chaoyi
    Li, Meng
    Yang, Ruizhe
    2019 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2019,