A pH-responsive assembly based on upconversion nanocrystals and ultrasmall nickel nanoparticles

被引:10
|
作者
Xu, Xia [1 ,2 ]
Long, Yan [1 ,2 ]
Lei, Pengpeng [1 ,2 ]
Dong, Lile [1 ,3 ]
Du, Kaimin [1 ,3 ]
Feng, Jing [1 ]
Zhang, Hongjie [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, 5625 Renmin St, Changchun 130022, Jilin, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
OPTICAL-PROPERTIES; DRUG; NANOMATERIALS; NANOCARRIERS; LUMINESCENCE; SPECTROSCOPY; EXCITATIONS; NANOSHEETS;
D O I
10.1039/c7tc02665j
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report a hybrid assembly based on NaYF4: Yb3+, Er3+/Tm3+@NaYF4 (core@shell) upconversion nanocrystals and ultrasmall Ni nanoparticles (abbreviated as core@shell@Ni) for rapid response towards pH in different PBS solutions. In this approach, Ni nanoparticles located on the surface of the core@shell upconversion nanocrystal serve as an efficient quencher for upconversion luminescence (UCL). A series of dynamic processes of the S-4(3/2) -> I-4(15/2) transition of Er3+ in Er3+-doped core@shell@Ni have been presented in order to discuss the energy transfer mechanisms between UCNPs and Ni nanoparticles. The upconversion luminescence can be recovered by incubating the core@shell@Ni assembly with pH 5.0 PBS that oxidizes Ni to Ni2+, while the UCL could be still quenched when the hybrid assembly was incubated with pH 7.4 PBS. However, the core@shell@Co assembly's response toward pH is not distinguished due to the rapid recovery of emission intensity both in pH 5.0 and 7.4 PBS. The ability of the core@shell@Ni assembly to distinguish different pH values may be a fine platform for the real-time optical monitoring of chemical reactions and many important physiological processes associated with pH.
引用
收藏
页码:9666 / 9672
页数:7
相关论文
共 50 条
  • [41] pH-Responsive Assembly of Gold Nanoparticles and "Spatiotemporally Concerted" Drug Release for Synergistic Cancer Therapy
    Nam, Jutaek
    La, Wan-Geun
    Hwang, Sekyu
    Ha, Yeong Su
    Park, Nokyoung
    Won, Nayoun
    Jung, Sungwook
    Bhang, Suk Ho
    Ma, Yoon-Ji
    Cho, Yong-Min
    Jin, Min
    Han, Jin
    Shin, Jung-Youn
    Wang, Eun Kyung
    Kim, Sang Geol
    Cho, So-Hye
    Yoo, Jeongsoo
    Kim, Byung-Soo
    Kim, Sungjee
    ACS NANO, 2013, 7 (04) : 3388 - 3402
  • [42] Complex Assembly of Polymer Conjugated Mesoporous Silica Nanoparticles for Intracellular pH-Responsive Drug Delivery
    Yang, Yang
    Achazi, Katharina
    Jia, Yi
    Wei, Qiang
    Haag, Rainer
    Li, Junbai
    LANGMUIR, 2016, 32 (47) : 12453 - 12460
  • [43] Preparation of pH-responsive silver nanoparticles by RAFT polymerization
    Youyi Sun
    Yaqing Liu
    Guizhe Zhao
    Xing Zhou
    Jiangang Gao
    Qijin Zhang
    Journal of Materials Science, 2008, 43 : 4625 - 4630
  • [44] Controlling the stability of Pickering emulsions by pH-responsive nanoparticles
    Qin, Shiyi
    Yong, Xin
    SOFT MATTER, 2019, 15 (16) : 3291 - 3300
  • [45] Multifunctional pH-Responsive Sprayable Hydrogel Based on Chitosan and Lignin-Based Nanoparticles
    Zhu, Weiyan
    Lu, Jinshun
    Dai, Lin
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2018, 35 (12)
  • [46] Preparation of pH-responsive silver nanoparticles by RAFT polymerization
    Sun, Youyi
    Liu, Yaqing
    Zhao, Guizhe
    Zhou, Xing
    Gao, Jiangang
    Zhang, Qijin
    JOURNAL OF MATERIALS SCIENCE, 2008, 43 (13) : 4625 - 4630
  • [47] Development of pH-responsive poly(γ-cyclodextrin) derivative nanoparticles
    Oh, Nam Muk
    Oh, Kyung Taek
    Lee, Eun Seong
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2014, 119 : 14 - 21
  • [48] pH-Responsive Nanoparticles for Cancer Immunotherapy: A Brief Review
    Yan, Yunfeng
    Ding, Hangwei
    NANOMATERIALS, 2020, 10 (08) : 1 - 15
  • [49] pH-Responsive Aerobic Nanoparticles for Effective Photodynamic Therapy
    Shen, Lingyue
    Huang, Yu
    Chen, Dong
    Qiu, Feng
    Ma, Chuan
    Jin, Xin
    Zhu, Xinyuan
    Zhou, Guoyu
    Zhang, Zhiyuan
    THERANOSTICS, 2017, 7 (18): : 4537 - 4550
  • [50] Phosphate Removal with pH-Responsive Calcium Carbonate Nanoparticles
    Aziz, Hafiz Gadafi Abdul
    Ooi, Boon Seng
    Ahmad, Abdul Latif
    Ahmad, Zainal
    Ahmad, Mohd Azmier
    Leo, Choe Peng
    CHEMICAL ENGINEERING & TECHNOLOGY, 2022, 45 (11) : 1976 - 1981