Perturbation WKB approximation: Quartic anharmonic oscillator

被引:0
|
作者
Lu, SC [1 ]
Chen, Y
Sun, F
Wang, B
机构
[1] Shanghai Normal univ, Dept Phys, Shanghai 200234, Peoples R China
[2] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A perturbation-WKB method, which combines WKB approximation and stationary-state perturbation theory, is presented and used to deal with the bound-state perturbation problem of quantum system. This method inherits the conciseness of WKB, which turns the calculation of matrix element into the calculation of a definite integral, and is especially suitable to a perturbed system in higher excited state. As an example, the perturbation-WKB method is applied to find the energy of lambda chi(4) anharmonic oscillator. The results calculated are compared with the accurate values and the values obtained from low-order variational perturbation theory.
引用
收藏
页码:375 / 384
页数:10
相关论文
共 50 条
  • [21] Comment on "Quartic anharmonic oscillator and non-Hermiticity"
    Mostafazadeh, A
    PHYSICAL REVIEW A, 2005, 71 (04):
  • [22] FROM QUARTIC ANHARMONIC OSCILLATOR TO DOUBLE WELL POTENTIAL
    Turbiner, Alexander, V
    Carlos Del Valle, Juan
    ACTA POLYTECHNICA, 2022, 62 (01) : 208 - 210
  • [23] NODAL PROPERTIES OF THE SCALED QUARTIC ANHARMONIC-OSCILLATOR
    SHANLEY, PE
    ANNALS OF PHYSICS, 1988, 186 (02) : 325 - 354
  • [24] Superconvergent Perturbation Theory for an Anharmonic Oscillator
    Gregory S. Tschumper
    Mark R. Hoffmann
    Journal of Mathematical Chemistry, 2002, 31 : 105 - 120
  • [25] On perturbation theory for an asymmetric anharmonic oscillator
    Yu. M. Poluéktov
    Russian Physics Journal, 2009, 52 : 33 - 45
  • [26] Dynamics of an anharmonic oscillator with a periodic perturbation
    Bolotin, YL
    Gonchar, VY
    Granovskii, MY
    Chechkin, AV
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 88 (01) : 196 - 205
  • [27] STOCHASTIC PERTURBATION OF A CUBIC ANHARMONIC OSCILLATOR
    Bernardi, Enrico
    Lanconelli, Alberto
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (05): : 2563 - 2585
  • [28] Singularly perturbed anharmonic quartic potential oscillator problem
    Róbert Vrábel’
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2004, 55 : 720 - 724
  • [29] SPECTRAL PROPERTIES OF THE SCALED QUARTIC ANHARMONIC-OSCILLATOR
    SHANLEY, PE
    ANNALS OF PHYSICS, 1988, 186 (02) : 292 - 324
  • [30] Singularly perturbed anharmonic quartic potential oscillator problem
    Vrábel, R
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2004, 55 (04): : 720 - 724