Numerical solution of stochastic fractional differential equations

被引:58
|
作者
Kamrani, Minoo [1 ]
机构
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
关键词
Stochastic fractional differential equations; Galerkin approximation; Convergence; VARIATIONAL ITERATION METHOD; HOMOTOPY ANALYSIS METHOD; APPROXIMATIONS; DERIVATIVES; NOISE;
D O I
10.1007/s11075-014-9839-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nowadays, fractional calculus is used to model various different phenomena in nature. The aim of this paper is to investigate the numerical solution of stochastic fractional differential equations (SFDEs) driven by additive noise. By applying Galerkin method that is based on orthogonal polynomials which here we have used Jacobi polynomials, we prove the convergence of the method. Numerical examples confirm the efficiency of the method.
引用
收藏
页码:81 / 93
页数:13
相关论文
共 50 条
  • [1] Numerical solution of stochastic fractional differential equations
    Minoo Kamrani
    [J]. Numerical Algorithms, 2015, 68 : 81 - 93
  • [2] NUMERICAL SOLUTION OF PERSISTENT PROCESSES-BASED FRACTIONAL STOCHASTIC DIFFERENTIAL EQUATIONS
    Uma, D.
    Balachandar, S. Raja
    Venkatesh, S. G.
    Balasubramanian, K.
    Masetshaba, Mantepu Tshepo
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (04)
  • [3] NUMERICAL SOLUTION OF FREE STOCHASTIC DIFFERENTIAL EQUATIONS
    Schluechtermann, Georg
    Wibmer, Michael
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (06) : 2623 - 2650
  • [4] Revisiting the numerical solution of stochastic differential equations
    Hurn, Stan
    Lindsay, Kenneth A.
    Xu, Lina
    [J]. CHINA FINANCE REVIEW INTERNATIONAL, 2019, 9 (03) : 312 - 323
  • [5] A Convolution Method for Numerical Solution of Backward Stochastic Differential Equations Based on the Fractional FFT
    Fu, Kexin
    Zeng, Xiaoxiao
    Li, Xiaofei
    Du, Junjie
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (01)
  • [6] Numerical Solution of Stochastic Differential Equations on Supercomputers
    Artemiev, S. S.
    Korneev, V. D.
    [J]. NUMERICAL ANALYSIS AND APPLICATIONS, 2011, 4 (01) : 1 - 11
  • [7] A Numerical Approach of Handling Fractional Stochastic Differential Equations
    Batiha, Iqbal M. M.
    Abubaker, Ahmad A. A.
    Jebril, Iqbal H. H.
    Al-Shaikh, Suha B. B.
    Matarneh, Khaled
    [J]. AXIOMS, 2023, 12 (04)
  • [8] Sylvester Equations and the numerical solution of partial fractional differential equations
    Harker, Matthew
    O'Leary, Paul
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 : 370 - 384
  • [9] An approximate method for numerical solution of fractional differential equations
    Kumar, Pankaj
    Agrawal, Om Prakash
    [J]. SIGNAL PROCESSING, 2006, 86 (10) : 2602 - 2610
  • [10] The BEM for numerical solution of partial fractional differential equations
    Katsikadelis, John T.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 891 - 901