The BEM for numerical solution of partial fractional differential equations

被引:45
|
作者
Katsikadelis, John T. [1 ]
机构
[1] Natl Tech Univ Athens, Inst Struct Anal & Aseism Res, Dept Civil Engn, Athens, Greece
关键词
Partial fractional differential equations; Diffusion-wave equation; Viscoelastic membranes; Numerical methods; Analog equation method; Boundary element method;
D O I
10.1016/j.camwa.2011.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical method is presented for the solution of partial fractional differential equations (FDEs) arising in engineering applications and in general in mathematical physics. The solution procedure applies to both linear and nonlinear problems described by evolution type equations involving fractional time derivatives in bounded domains of arbitrary shape. The method is based on the concept of the analog equation, which in conjunction with the boundary element method (BEM) enables the spatial discretization and converts a partial FDE into a system of coupled ordinary multi-term FDEs. Then this system is solved using the numerical method for the solution of such equations developed recently by Katsikadelis. The method is illustrated by solving second order partial FDEs and its efficiency and accuracy is validated. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:891 / 901
页数:11
相关论文
共 50 条