Structured Support Vector Machine Learning of Conditional Random Fields

被引:0
|
作者
Rangkuti, Rizki Perdana [1 ]
Mantau, Aprinaldi Jasa [1 ]
Dewanto, Vektor [2 ]
Habibie, Novian [1 ]
Jatmiko, Wisnu [1 ]
机构
[1] Univ Indonesia, Fac Comp Sci, Jawa Barat, Indonesia
[2] Bogor Agr Univ, Dept Comp Sci, Jawa Barat, Indonesia
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This research aims to improve the capability of semantic segmentation through data perspective. This research proposed a parameterized Conditional Random Fields model and learns the model by using Structured Support Vector Machine (SSVM). The SSVM utilizes Hamming loss function for optimizing I-slack Margin Rescaling formulation. The joint feature vector is derived from energy potentials. Variation of image size produces some missing values in the joint feature vector. This research shows that a zero padding can resolve the missing values. The experiment result shows that prediction with parameterized CRF yields 75.867% global accuracy (GA) and 22.1410 % averaged class accuracy (CA).
引用
收藏
页码:548 / 555
页数:8
相关论文
共 50 条
  • [21] Learning flexible features for conditional random fields
    Stewart, Liam
    He, Xuming
    Zemel, Richard S.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (08) : 1415 - 1426
  • [23] Image Modeling using Tree Structured Conditional Random Fields
    Awasthi, Pranjal
    Gagrani, Aakanksha
    Ravindran, Balaraman
    [J]. 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2060 - 2065
  • [24] Conditional Random Fields for Pattern Recognition Applied to Structured Data
    Burr, Tom
    Skurikhin, Alexei
    [J]. ALGORITHMS, 2015, 8 (03) : 466 - 483
  • [25] Tree-structured conditional random fields for semantic annotation
    Tang, Jie
    Hong, Mingcai
    Li, Juanzi
    Liang, Bangyong
    [J]. SEMANTIC WEB - ISEC 2006, PROCEEDINGS, 2006, 4273 : 640 - 653
  • [26] Efficient Piecewise Learning for Conditional Random Fields
    Alahari, Karteek
    Russell, Chris
    Torr, Philip H. S.
    [J]. 2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 895 - 901
  • [27] Blending Learning and Inference in Conditional Random Fields
    Hazan, Tamir
    Schwing, Alexander G.
    Urtasun, Raquel
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [28] Support Vector Random Fields for spatial classification
    Lee, CH
    Greiner, R
    Schmidt, M
    [J]. KNOWLEDGE DISCOVERY IN DATABASES: PKDD 2005, 2005, 3721 : 121 - 132
  • [29] Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection
    Ahmad, Iftikhar
    Basheri, Mohammad
    Iqbal, Muhammad Javed
    Rahim, Aneel
    [J]. IEEE ACCESS, 2018, 6 : 33789 - 33795
  • [30] Machine Learning Scoring Functions Based on Random Forest and Support Vector Regression
    Ballester, Pedro J.
    [J]. PATTERN RECOGNITION IN BIOINFORMATICS, 2012, 7632 : 14 - 25