Strain relaxation of patterned Ge and SiGe layers on Si(001) substrates

被引:12
|
作者
Mochizuki, Shogo
Sakai, Akira
Nakatsuka, Osamu
Kondo, Hiroki
Yukawa, Katsunori
Izunome, Koji
Senda, Takeshi
Toyoda, Eiji
Ogawa, Masaki
Zaima, Shigeaki
机构
[1] Nagoya Univ, Grad Sch Engn, Dept Crystalline Mat Sci, Chikusa Ku, Nagoya, Aichi 4648603, Japan
[2] Nagoya Univ, EcoTopia Sci Inst, Chikusa Ku, Nagoya, Aichi 4648603, Japan
[3] Toshiba Ceram Co Ltd, Niigata 9570197, Japan
[4] Nagoya Univ, Ctr Cooperat Res Adv Sci & Technol, Chikusa Ku, Nagoya, Aichi 4648603, Japan
关键词
D O I
10.1088/0268-1242/22/1/S31
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have investigated dislocation morphology and strain relaxation mechanisms of SiGe and Ge sub-micron wide striped mesa lines patterned on Si(0 0 1) substrates. The patterning of SiGe and Ge layers principally leads to asymmetric elastic strain relaxation. Post-patterning anneal induces 60 degrees dislocation introduction to relax the strain but the narrower the line width the more dominant is the elastic strain relaxation. In the case of 250 nm wide SiGe lines, 60 degrees dislocation introduction along the line is critically suppressed so that asymmetric strain distribution is realized. On the other hand, for the Ge line structure, pre-formed pure edge dislocations elongate along both orthogonal directions at the heterointerface independent of the line geometry even with the line width of 250 nm. Thus strain relaxation occurs symmetrically and rigidly. These results can be explained by deference of the introduction and propagation mechanisms of 60 degrees and pure-edge dislocations.
引用
收藏
页码:S132 / S136
页数:5
相关论文
共 50 条
  • [41] Growth, structure and photoluminescence of SiGe/Si quantum wires and dots on patterned Si(001) substrates
    Dieker, C
    Hartmann, A
    Jager, W
    Bangert, U
    Vescan, L
    Luth, H
    MICROSCOPY OF SEMICONDUCTING MATERIALS 1995, 1995, 146 : 379 - 384
  • [42] Hole spin relaxation in [001] strained asymmetric Si/SiGe and Ge/SiGe quantum wells
    Zhang, P.
    Wu, M. W.
    PHYSICAL REVIEW B, 2009, 80 (15)
  • [43] STRAIN RELAXATION IN SI1-XGEX LAYERS ON SI(001)
    CAPANO, MA
    HART, L
    BOWEN, DK
    GORDONSMITH, D
    THOMAS, CR
    GIBBINGS, CJ
    HALLIWELL, MAG
    HOBBS, LW
    JOURNAL OF CRYSTAL GROWTH, 1992, 116 (3-4) : 260 - 270
  • [44] Strain relaxation and surface morphology of ultrathin high ge content SiGe buffers grown on Si(001) substrate
    Myronov, Maksym
    Shiraki, Yasuhiro
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (02): : 721 - 725
  • [45] Thermal Misfit Strain Relaxation in Ge/(001)Si Heterostructures
    Jayesh Bharathan
    Honghui Zhou
    Jagdish Narayan
    George Rozgonyi
    Gary E. Bulman
    Journal of Electronic Materials, 2014, 43 : 3196 - 3203
  • [46] Thermal Misfit Strain Relaxation in Ge/(001)Si Heterostructures
    Bharathan, Jayesh
    Zhou, Honghui
    Narayan, Jagdish
    Rozgonyi, George
    Bulman, Gary E.
    JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (09) : 3196 - 3203
  • [47] THE INFLUENCE OF SB AS A SURFACTANT ON THE STRAIN RELAXATION OF GE/SI(001)
    THORNTON, JMC
    WILLIAMS, AA
    MACDONALD, JE
    VANSILFHOUT, RG
    VANDERVEEN, JF
    FINNEY, M
    NORRIS, C
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1991, 9 (04): : 2146 - 2149
  • [48] Optical gain in short period Si/Ge superlattices on [001]-SiGe substrates
    Virgilio, Michele
    Pizzi, Giovanni
    Grosso, Giuseppe
    JOURNAL OF APPLIED PHYSICS, 2011, 110 (08)
  • [49] Microphotoluminescence and perfect ordering of SiGe islands on pit-patterned Si(001) substrates
    Hackl, Florian
    Grydlik, Martyna
    Brehm, Moritz
    Groiss, Heiko
    Schaeffler, Friedrich
    Fromherz, Thomas
    Bauer, Guenther
    NANOTECHNOLOGY, 2011, 22 (16)
  • [50] Relaxation Delay of Ge-Rich Epitaxial SiGe Films on Si(001)
    Salomon, Andreas
    Aberl, Johannes
    Vukusic, Lada
    Hauser, Manuel
    Fromherz, Thomas
    Brehm, Moritz
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2022, 219 (17):