A new generalization of variable coefficients algebraic method for solving nonlinear evolution equations

被引:3
|
作者
Bai, Cheng-Lin [1 ]
机构
[1] Liaocheng Univ, Sch Phys Sci & Informat Engn, Shandong 252059, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2006.04.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, based on a new intermediate transformation, a more general variable coefficient algebraic method is proposed. The efficiency of the method is demonstrated on the Broer-Kaup-Kupershmidt equations. As a result, several new families of exact solutions of physical interest are obtained. The method can be applied to other nonlinear evolution equations in mathematical physics. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1114 / 1129
页数:16
相关论文
共 50 条
  • [21] A combination method for solving nonlinear evolution equations
    Xie, Yuanxi
    Peng, Shiyu
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2008, 123 (12): : 1607 - 1615
  • [22] FORMULAE FOR THE TRANSFORMATION OF COEFFICIENTS IN LEMERS METHOD FOR NUMERICALLY SOLVING ALGEBRAIC EQUATIONS
    KOSTOVSKII, AN
    DOKLADY AKADEMII NAUK SSSR, 1960, 131 (04): : 738 - 741
  • [23] New Method for Solving Nonlinear equations
    Salas, Alvaro H.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (04): : 1317 - 1323
  • [24] A METHOD FOR SOLVING ALGEBRAIC SYSTEMS CONSISTING OF LINEAR AND NONLINEAR EQUATIONS
    TEWARSON, RP
    CHEN, DQ
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1985, 21 (09) : 1577 - 1581
  • [26] A method for solving variable coefficients initial-boundary equations
    Liu, Jianping
    Xu, Liyong
    Shen, Yufa
    Mao, Xuezhi
    Li, Xia
    Journal of Computational Information Systems, 2013, 9 (10): : 3801 - 3807
  • [27] A QUASI-NEWTON METHOD FOR SOLVING NONLINEAR ALGEBRAIC EQUATIONS
    KIM, S
    TEWARSON, RP
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1992, 24 (04) : 93 - 97
  • [28] Newton waveform relaxation method for solving algebraic nonlinear equations
    Wu, Shulin
    Huang, Chengming
    Liu, Yong
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 201 (1-2) : 553 - 560
  • [29] ALGEBRAIC METHOD FOR SOLVING LINEAR PARTIAL-DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS .2. FUNDAMENTAL SOLUTIONS
    VASILACH, S
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1979, 10 (05) : 1077 - 1088
  • [30] New scheme for nonlinear Schrodinger equations with variable coefficients
    Yin, Xiu-Ling
    Kong, Shu-Xia
    Liu, Yan-Qin
    Zheng, Xiao-Tong
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2019, 19 (03): : 151 - 157