Analysis of coastal wind speed retrieval from CYGNSS mission using artificial neural network

被引:47
|
作者
Li, Xiaohui [1 ,2 ]
Yang, Dongkai [1 ]
Yang, Jingsong [2 ,3 ]
Zheng, Gang [2 ,3 ]
Han, Guoqi [4 ]
Nan, Yang [5 ]
Li, Weiqiang [6 ,7 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
[2] Minist Nat Resources, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Hangzhou 310012, Peoples R China
[3] Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519082, Peoples R China
[4] Fisheries & Oceans Canada, Inst Ocean Sci, Sidney, BC V8L 4B2, Canada
[5] Wuhan Univ, GNSS Res Ctr, Wuhan 430079, Peoples R China
[6] CSIC, Inst Space Sci ICE, Barcelona 08193, Spain
[7] Inst Estudis Espacials Catalunya IEEC, Barcelona 08034, Spain
基金
中国国家自然科学基金;
关键词
Cyclone GNSS (CYGNSS); Sea surface wind speed; Coastal; Artificial neural network (ANN); Global navigation satellite system reflectometry (GNSS-R); REFLECTED GPS SIGNALS; SOIL-MOISTURE; OCEAN; STABILITY; ALGORITHM; ORBIT;
D O I
10.1016/j.rse.2021.112454
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper demonstrates the capability and performance of sea surface wind speed retrieval in coastal regions (within 200 km away from the coastline) using spaceborne Global Navigation Satellite System Reflectometry (GNSS-R) data from NASA's Cyclone GNSS (CYGNSS) mission. The wind speed retrieval is based on the Artificial Neural Network (ANN). A feedforward neural network is trained with the collocated CYGNSS Level 1B (version 2.1) observables and the wind speed from European Centre for Medium-range Weather Forecast Reanalysis 5th Generation (ECMWF ERA5) data in coastal regions. An ANN model with five hidden layers and 200 neurons in each layer has been constructed and applied to the validation set for wind speed retrieval. The proposed ANN model achieves good wind speed retrieval performance in coastal regions with a bias of -0.03 m/s and a RMSE of 1.58 m/s, corresponding to an improvement of 24.4% compared to the CYGNSS Level 2 (version 2.1) wind speed product. The ANN based retrievals are also compared to the ground truth measurements from the National Data Buoy Center (NDBC) buoys, which shows a bias of -0.44 m/s and a RMSE of 1.86 m/s. Moreover, the sensitivities of the wind speed retrieval performance to different input parameters have been analyzed. Among others, the geolocation of the specular point and the swell height can provide significant contribution to the wind speed retrieval, which can provide useful reference for more generic GNSS-R wind speed retrieval algorithms in coastal regions.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Assessment of CYGNSS Coastal Wind Speed Retrieval
    Li, Xiaohui
    Yang, Dongkai
    Yang, Jingsong
    Zheng, Gang
    [J]. 2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2019, : 809 - 812
  • [2] Wind Speed Estimation From CYGNSS Using Artificial Neural Networks
    Reynolds, Jennifer
    Clarizia, Maria Paola
    Santi, Emanuele
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 708 - 716
  • [3] Cyclonic wind speed retrieval based on Bayesian regularized neural network using CYGNSS data
    Maheshwari, Megha
    Chakraborty, Arun
    Kumar, Akhilesh
    Nirmala, Srini
    [J]. JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (02)
  • [4] Retrieval and Assessment of Significant Wave Height from CYGNSS Mission Using Neural Network
    Wang, Feng
    Yang, Dongkai
    Yang, Lei
    [J]. REMOTE SENSING, 2022, 14 (15)
  • [5] Neural Network Based Quality Control of CYGNSS Wind Retrieval
    Balasubramaniam, Rajeswari
    Ruf, Christopher
    [J]. REMOTE SENSING, 2020, 12 (17) : 1 - 17
  • [6] Wind Speed Retrieval Algorithm for the Cyclone Global Navigation Satellite System (CYGNSS) Mission
    Clarizia, Maria Paola
    Ruf, Christopher S.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (08): : 4419 - 4432
  • [7] AN ALGORITHM FOR WIND SPEED RETRIEVAL FROM CYGNSS SPACE OBSERVATORIES
    Addabbo, P.
    di Bisceglie, M.
    Galdi, C.
    Giangregorio, G.
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4281 - 4284
  • [8] Assessment of CYGNSS Wind Speed Retrieval Uncertainty
    Ruf, Christopher S.
    Gleason, Scott
    McKague, Darren S.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (01) : 87 - 97
  • [9] A 'TRACK-WISE' WIND RETRIEVAL ALGORITHM FOR THE CYGNSS MISSION
    Said, Faozi
    Jelenak, Zorana
    Park, Jeonghwang
    Soisuvarn, Seubson
    Chang, Paul S.
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 8711 - 8714
  • [10] RESULTS ANALYSIS OF COASTAL REGIONS SEA SURFACE SALINITY RETRIEVAL FROM AQUARIUS MISSION USING DEEP NEURAL NETWORK
    Zhang, Yifan
    Zhang, Lanjie
    Zhang, Biao
    He, Qiurui
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6990 - 6993