共 23 条
Experimental Evaluation of End-to-end Flow Latency Reduction in Softwarized Cellular Networks through Dynamic Multi-Access Edge Computing
被引:2
|作者:
Fondo-Ferreiro, Pablo
[1
]
Candal-Ventureira, David
[1
]
Gil-Castineira, Felipe
[1
]
Javier Gonzalez-Castano, Francisco
[1
]
Collins, Diarmuid
[2
]
机构:
[1] Univ Vigo, Informat Technol Grp, AtlanTTic, Vigo, Spain
[2] Trinity Coll Dublin, CONNECT Ctr, Dublin, Ireland
来源:
2021 IEEE 32ND ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC)
|
2021年
关键词:
4G;
5G;
Low Latency;
Multi-Access Edge Computing (MEC);
Software-Defined Networking (SDN);
D O I:
10.1109/PIMRC50174.2021.9569590
中图分类号:
TN [电子技术、通信技术];
学科分类号:
0809 ;
摘要:
Over the last few years the Multi-Access Edge Computing (MEC) paradigm has been gaining attention as a key enabler for low latency applications in cellular networks. In this paper we analyze a solution based on Software-Defined Networking (SDN) for supporting dynamic and transparent relocation of the endpoint of a communication from the core to an edge infrastructure in current cellular networks. We also provide results of real-world experiments utilising a Network Function Virtualization (NFV)-based testbed for evaluating session continuity and latency reduction when the gateway or anchor point used by two end User Equipments (UEs) is relocated to edge resources. Our experimental results show that the communication can be dynamically relocated from the core to the edge while guaranteeing session continuity during the whole process. We demonstrate that the mechanism is able to reduce latency considerably when the core network is congested.
引用
收藏
页数:6
相关论文