Textile triboelectric nanogenerators for self-powered biomonitoring

被引:72
|
作者
Lama, John [1 ]
Yau, Andy [1 ]
Chen, Guorui [1 ]
Sivakumar, Aditya [1 ]
Zhao, Xun [1 ]
Chen, Jun [1 ]
机构
[1] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
关键词
COGNITIVE-BEHAVIORAL THERAPY; WEARABLE ENERGY HARVESTERS; LITHIUM-ION BATTERY; SOLAR-CELLS; HUMAN-MOTION; HEALTH-CARE; FLUOROCARBON PLASMA; HIGHLY TRANSPARENT; HIGH-EFFICIENCY; STRAIN SENSOR;
D O I
10.1039/d1ta02518j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Biomonitoring has played an increasingly important role in improving the quality of healthcare in recent years, but limitations in power supply and wearability, as well as the rise of the Internet of Things (IoT) have called for the development of a new type of device to provide biomonitoring on a daily basis. While the introduction of triboelectric nanogenerators (TENGs) has begun to solve these issues by providing sustainably powered biomonitoring, textile-based TENGs (tTENGs) take a more pervasive approach by integrating this technology into commonly worn textiles. tTENGs are particularly unique as they offer an inexpensive alternative for biomonitoring; the high breathability, comfort, and scalability inherent to tTENGs' woven structures have made them increasingly convenient for human application. This review begins by highlighting novel material configurations of tTENGs and their advantages for biomonitoring. We then discuss various wearable tTENG devices that have been adapted for constant cardiovascular and respiratory monitoring, pertinent to those suffering from diseases in these organ systems. Transitioning into the biomechanical aspect of the human body, we explore tTENG configurations integrated for upper body and gait motion sensing. At the same time, with many people suffering from sleep disorders, we examine tTENGs that monitor the quality of sleep of an individual. Lastly, on a more molecular level, we examine the application of tTENGs for monitoring biochemical fluctuations, such as sweat. Finally, we discuss the future research directions for the field, in particular regarding personalized healthcare propelled by tTENGs.
引用
收藏
页码:19149 / 19178
页数:30
相关论文
共 50 条
  • [21] Triboelectric nanogenerators as self-powered sensors for biometric authentication
    Shi, Xue
    Han, Kai
    Pang, Yaokun
    Mai, Wenjie
    Luo, Jianjun
    NANOSCALE, 2023, 15 (22) : 9635 - 9651
  • [22] High Performance Triboelectric Nanogenerators for Self-powered Electronics
    Han, Haewook
    Kim, Jin-Woo
    2019 13TH IEEE INTERNATIONAL CONFERENCE ON NANO/MOLECULAR MEDICINE & ENGINEERING (IEEE-NANOMED 2019), 2019, : 64 - 64
  • [23] Triboelectric Nanogenerators for Self-Powered Degradation of Chemical Pollutants
    Uddin, Md Mazbah
    Dip, Tanvir Mahady
    Tushar, Shariful Islam
    Sayam, Abdullah
    Anik, Habibur Rahman
    Arin, Md. Reasat Aktar
    Talukder, Amit
    Sharma, Suraj
    ACS OMEGA, 2024, 10 (01): : 26 - 54
  • [24] Structural Triboelectric Nanogenerators for Self-powered Wearable Devices
    Karbari, Sudha R.
    APPLICATIONS OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN ENGINEERING, SIGMA 2018, VOL 1, 2019, 698 : 187 - 197
  • [25] Self-Powered Smart Gloves Based on Triboelectric Nanogenerators
    Shen, Sophia
    Xiao, Xiao
    Yin, Junyi
    Chen, Jun
    SMALL METHODS, 2022, 6 (10):
  • [26] Review and Prospect of Triboelectric Nanogenerators in Self-powered Microsystems
    Zhang C.
    Fu X.
    Wang Z.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2019, 55 (07): : 89 - 101
  • [27] Textile Triboelectric Nanogenerators as Self Powered Wearable Temperature Sensors
    Min, Guanbo
    Khandelwal, Gaurav
    Dahiya, Abhishek Singh
    Mulvihill, Daniel M.
    Dahiya, Ravinder
    2022 IEEE INTERNATIONAL CONFERENCE ON FLEXIBLE AND PRINTABLE SENSORS AND SYSTEMS (IEEE FLEPS 2022), 2022,
  • [28] Triboelectric nanogenerators as wearable power sources and self-powered sensors
    Pu, Xiong
    Zhang, Chi
    Wang, Zhong Lin
    NATIONAL SCIENCE REVIEW, 2023, 10 (01)
  • [29] Stackable Triboelectric Nanogenerators for Self-Powered Marine Monitoring Buoy
    Dong, Jiale
    Wang, Hao
    Xiao, Xiu
    Du, Taili
    Zhao, Yunpeng
    Fan, Zhongqi
    Xu, Minyi
    2021 IEEE 16TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS), 2021, : 660 - 664
  • [30] Recent Progress in Self-Powered Sensors Based on Triboelectric Nanogenerators
    Wu, Junpeng
    Zheng, Yang
    Li, Xiaoyi
    SENSORS, 2021, 21 (21)