Orderings on semirings and completely positive matrices

被引:3
|
作者
Mohindru, Preeti [1 ]
Pereira, Rajesh [1 ]
机构
[1] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
来源
LINEAR & MULTILINEAR ALGEBRA | 2016年 / 64卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
matrices over semirings; completely positive matrices; diagonally dominant matrices; inclines; ordered semirings; 15B33; 15B48; 06A75; 16Y60; NONNEGATIVE FACTORIZATION;
D O I
10.1080/03081087.2015.1059405
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A real symmetric matrix is called a completely positive matrix if there exists a nonnegative real matrix such that. In this paper, we extend the notion of complete positivity for matrices over real numbers to matrices over semirings in general. We find necessary and sufficient conditions for matrices over certain semirings to be completely positive. We also find an upper bound on the CP-rank of completely positive matrices over certain special types of semirings.
引用
收藏
页码:818 / 833
页数:16
相关论文
共 50 条
  • [31] COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES
    CHOI, MD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) : 285 - 290
  • [32] {0,1} Completely positive matrices
    Berman, A
    Xu, CQ
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 399 : 35 - 51
  • [33] Separating doubly nonnegative and completely positive matrices
    Hongbo Dong
    Kurt Anstreicher
    Mathematical Programming, 2013, 137 : 131 - 153
  • [34] Completely Positive Matrices: Real, Rational, and Integral
    Berman A.
    Shaked-Monderer N.
    Acta Mathematica Vietnamica, 2018, 43 (4) : 629 - 639
  • [35] A note on completely positive matrices of order 5
    Xu, Changqing
    Hao, Hong
    Zhang, Xinping
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON APPLIED MATRIX THEORY, 2009, : 182 - 185
  • [36] Structure of Completely π-Inverse Semirings
    Yu, Jianping
    Sun, Yongli
    Li, Shizheng
    Zhang, Yufen
    ALGEBRA COLLOQUIUM, 2010, 17 (01) : 101 - 108
  • [37] On quasi completely regular semirings
    Maity, S. K.
    Ghosh, R.
    SEMIGROUP FORUM, 2014, 89 (02) : 422 - 430
  • [38] Properties of Completely Regular Semirings
    Sulochana, N.
    Vasanthi, T.
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2016, 40 (06) : 923 - 930
  • [39] COMPLETELY POSITIVE COMPLETION OF PARTIAL MATRICES WHOSE ENTRIES ARE COMPLETELY BOUNDED MAPS
    FURUTA, K
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1994, 19 (04) : 381 - 403
  • [40] Matrices over semirings
    Ghosh, S
    INFORMATION SCIENCES, 1996, 90 (1-4) : 221 - 230