Orderings on semirings and completely positive matrices

被引:3
|
作者
Mohindru, Preeti [1 ]
Pereira, Rajesh [1 ]
机构
[1] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
来源
LINEAR & MULTILINEAR ALGEBRA | 2016年 / 64卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
matrices over semirings; completely positive matrices; diagonally dominant matrices; inclines; ordered semirings; 15B33; 15B48; 06A75; 16Y60; NONNEGATIVE FACTORIZATION;
D O I
10.1080/03081087.2015.1059405
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A real symmetric matrix is called a completely positive matrix if there exists a nonnegative real matrix such that. In this paper, we extend the notion of complete positivity for matrices over real numbers to matrices over semirings in general. We find necessary and sufficient conditions for matrices over certain semirings to be completely positive. We also find an upper bound on the CP-rank of completely positive matrices over certain special types of semirings.
引用
收藏
页码:818 / 833
页数:16
相关论文
共 50 条