Identification of the optimal active set in a noninterior continuation method for LCP

被引:6
|
作者
Xiu, NH [1 ]
Zhang, JZ
机构
[1] No Jiaotong Univ, Dept Appl Math, Beijing 100044, Peoples R China
[2] City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
linear complementarity; P-matrix; noninterior continuation method; optimal active set;
D O I
10.1023/A:1023065422836
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper concerns about the possibility of identifying the active set in a noninterior continuation method for solving the standard linear complementarity problem based on the algorithm and theory presented by Burke and Xu (J. Optim. Theory Appl. 112 ( 2002) 53). It is shown that under the assumptions of P-matrix and nondegeneracy, the algorithm requires at most O (log (beta(0) mu(0)/tau)) iterations to find the optimal active set, where beta(0) is the width of the neighborhood which depends on the initial point, mu(0) > 0 is the initial smoothing parameter, rho is a positive number which depends on the problem and the initial point, and tau is a small positive number which depends only on the problem.
引用
收藏
页码:183 / 198
页数:16
相关论文
共 50 条
  • [31] Predictor-corrector continuation method for optimal control problems
    Grigat, E
    Sachs, G
    VARIATIONAL CALCULUS, OPTIMAL CONTROL AND APPLICATIONS, 1998, 124 : 223 - 232
  • [32] THE SMOOTH CONTINUATION METHOD IN OPTIMAL CONTROL WITH AN APPLICATION TO QUANTUM SYSTEMS
    Bonnard, Bernard
    Shcherbakova, Nataliya
    Sugny, Dominique
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2011, 17 (01) : 267 - 292
  • [33] STABILIZED CONTINUATION METHOD FOR SOLVING OPTIMAL-CONTROL PROBLEMS
    OHTSUKA, T
    FUJII, H
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1994, 17 (05) : 950 - 957
  • [34] The primal-dual active set method for nonlinear optimal control problems with bilateral constraints
    Ito, K
    Kunisch, K
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 43 (01) : 357 - 376
  • [35] Primal-dual active set method for control constrained optimal control of the Stokes equations
    De Los Reyes, JC
    OPTIMIZATION METHODS & SOFTWARE, 2006, 21 (02): : 267 - 293
  • [36] An optimal structure identification method
    Olenev, SA
    Sokolov, SV
    AUTOMATION AND REMOTE CONTROL, 2000, 61 (09) : 1459 - 1465
  • [37] An Active Search Method for Finding Objects with Near-Optimal Property Values within a Given Set
    da Matta, Claudia E.
    Paiva, Henrique M.
    Galvao, Roberto K. H.
    Araujo, Mario C. U.
    Soares, Sofacles F. C.
    Weber, Karen C.
    Pinto, Luiz A.
    JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2016, 27 (07) : 1177 - 1187
  • [38] Block Structured Preconditioning within an Active-Set Method for Real-Time Optimal Control
    Quirynen, Rien
    Knyazev, Andrew
    Di Cairano, Stefano
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 1154 - 1159
  • [39] Optimal excitation for identification of a cam set-up
    Demeulenaere, B
    Lampaert, V
    Swevers, J
    De Schutter, J
    NOISE AND VIBRATION ENGINEERING, VOLS 1 - 3, PROCEEDINGS, 2001, : 1209 - 1215
  • [40] On optimal input design in conditional set membership identification
    Casini, M
    Garulli, A
    Vicino, A
    42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, 2003, : 6497 - 6502