EXPONENTIAL TRIGONOMETRIC CONVEX FUNCTIONS AND HERMITE-HADAMARD TYPE INEQUALITIES

被引:26
|
作者
Kadakal, Mahir [1 ]
Iscan, Imdat [1 ]
Agarwal, Praveen [2 ,3 ,4 ,5 ]
Jleli, Mohamed [6 ]
机构
[1] Giresun Univ, Sci & Arts Fac, Dept Math, TR-28200 Giresun, Turkey
[2] Anand Int Coll Engn, Dept Math, Jaipur 303012, Rajasthan, India
[3] Harish Chandra Res Inst, Rajasthan Dept Math, Allahabad 211019, Uttar Pradesh, India
[4] Int Ctr Basic & Appl Sci, Jaipur 302029, Rajasthan, India
[5] Inst Math & Math Modeling, Alma Ata, Kazakhstan
[6] King Saud Univ, Coll Sci, Dept Math, Riyadh, Saudi Arabia
关键词
Convex function; trigonometric convex function; exponential trigonometric convex functions; Hermite-Hadamard inequality; Holder-Iscan inequality; improved power-mean inequality;
D O I
10.1515/ms-2017-0410
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this manuscript, we introduce and study the concept of exponential trigonometric convex functions and their some algebraic properties. We obtain Hermite-Hadamard type inequalities for the newly introduced class of functions. We also obtain some refinements of the Hermite-Hadamard inequality for functions whose first derivative in absolute value, raised to a certain power which is greater than one, respectively at least one, is exponential trigonometric convex function. It has been shown that the result obtained with Holder-Iscan and improved power-mean integral inequalities give better approximations than that obtained with Holder and improved power-mean integral inequalities.
引用
收藏
页码:43 / 56
页数:14
相关论文
共 50 条
  • [21] Fejer and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions
    Chen, Feixiang
    Wu, Shanhe
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [22] ON HERMITE-HADAMARD TYPE INEQUALITIES FOR F-CONVEX FUNCTIONS
    Adamek, Miroslaw
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (03): : 867 - 874
  • [23] Hermite-Hadamard type inequalities for operator geometrically convex functions
    Taghavi, A.
    Darvish, V.
    Nazari, H. M.
    Dragomir, S. S.
    MONATSHEFTE FUR MATHEMATIK, 2016, 181 (01): : 187 - 203
  • [24] Hermite-Hadamard Type Inequalities and Convex Functions in Signal Processing
    Sun, Wenfeng
    He, Xiaowei
    IEEE ACCESS, 2024, 12 : 92906 - 92918
  • [25] Hermite-Hadamard's type inequalities for operator convex functions
    Dragomir, S. S.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) : 766 - 772
  • [26] Generalizations of Hermite-Hadamard Type Integral Inequalities for Convex Functions
    Wu, Ying
    Yin, Hong-Ping
    Guo, Bai-Ni
    AXIOMS, 2021, 10 (03)
  • [27] New discrete inequalities of Hermite-Hadamard type for convex functions
    Mohammed, Pshtiwan Othman
    Abdeljawad, Thabet
    Alqudah, Manar A.
    Jarad, Fahd
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [28] HERMITE-HADAMARD TYPE INTEGRAL INEQUALITIES FOR GENERALIZED CONVEX FUNCTIONS
    Aslani, S. Mohammadi
    Delavar, M. Rostamian
    Vaezpour, S. M.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2018, 9 (01): : 17 - 33
  • [29] Hermite-Hadamard inequalities for generalized convex functions
    Bessenyei M.
    Páles Z.
    aequationes mathematicae, 2005, 69 (1-2) : 32 - 40
  • [30] Hermite-Hadamard type inequalities for m-convex and (α, m)-convex functions
    Ozcan, Serap
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01):