In vertebrates, the biotransformation processes of xenobiotics are performed mainly by the liver which involves both hepatocytes and Kupffer-melanomacrophagic cells through enzymatic and nonenzymatic mechanisms. In this study, we investigated the liver of Rana esculenta adult frogs collected at two sample rice fields, one heavily polluted and one relatively unpolluted. Water pollution was determined by chemical analysis on tadpoles. The specific activities of some enzymes (glucose-6-phosphate dehydrogenase (G6PDH), acid and alkaline phosphatases (AcPase and AlkPase), succinic dehydrogenase (SDH), and catalase) were studied in the liver of adult frogs to identify the possible changes induced by contamination in the metabolic processes which depend on the function of the liver. The production of reactive oxygen species (ROS) were also evaluated through histochemical techniques. In the polluted samples, hepatocytes showed variations in the activity of G6PDH, AlkPase, and SDH and a moderate to intense ROS expression. Prominent changes were observed in Kupffer cells (KCs) and melanomacrophages (MMPs), both showing intense reactivity for AcPase and catalase and variations in melanin content and distribution. Results thus indicate a general adaptive response of liver parenchyma to environmental pollution. The possible role of both KCs and MMPs as scavengers of foreign substances is discussed. (C) 2004 Elsevier Inc. All rights reserved.