Non-Linear Langevin and Fractional Fokker-Planck Equations for Anomalous Diffusion by Levy Stable Processes

被引:15
|
作者
Anderson, Johan [1 ]
Moradi, Sara [2 ]
Rafiq, Tariq [3 ]
机构
[1] Chalmers Univ Technol, Dept Space Earth & Environm, SE-41296 Gothenburg, Sweden
[2] Royal Mil Acad, KMS, ERM, LPP, B-1000 Brussels, Belgium
[3] Lehigh Univ, Dept Mech Engn & Mech, Bethlehem, PA 18015 USA
来源
ENTROPY | 2018年 / 20卷 / 10期
关键词
non-local theory; Levy noise; Tsallis entropy; fractional Fokker-Plank equation; anomalous diffusion; 05; 40Fb; 02; 50Ey; 40-a; TRANSPORT; PLASMA; TURBULENCE; FOUNDATION; STATISTICS; FLIGHTS; CHAOS;
D O I
10.3390/e20100760
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The numerical solutions to a non-linear Fractional Fokker-Planck (FFP) equation are studied estimating the generalized diffusion coefficients. The aim is to model anomalous diffusion using an FFP description with fractional velocity derivatives and Langevin dynamics where Levy fluctuations are introduced to model the effect of non-local transport due to fractional diffusion in velocity space. Distribution functions are found using numerical means for varying degrees of fractionality of the stable Levy distribution as solutions to the FFP equation. The statistical properties of the distribution functions are assessed by a generalized normalized expectation measure and entropy and modified transport coefficient. The transport coefficient significantly increases with decreasing fractality which is corroborated by analysis of experimental data.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Levy anomalous diffusion and fractional Fokker-Planck equation
    Yanovsky, VV
    Chechkin, AV
    Schertzer, D
    Tur, AV
    PHYSICA A, 2000, 282 (1-2): : 13 - 34
  • [2] Levy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions
    Jespersen, S
    Metzler, R
    Fogedby, HC
    PHYSICAL REVIEW E, 1999, 59 (03) : 2736 - 2745
  • [3] A fractional Fokker-Planck model for anomalous diffusion
    Anderson, Johan
    Kim, Eun-jin
    Moradi, Sara
    PHYSICS OF PLASMAS, 2014, 21 (12)
  • [4] Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations
    Chen, Hua
    Li, Wei-Xi
    Xu, Chao-Jiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) : 320 - 339
  • [5] Anomalous diffusion: nonlinear fractional Fokker-Planck equation
    Tsallis, C
    Lenzi, EK
    CHEMICAL PHYSICS, 2002, 284 (1-2) : 341 - 347
  • [6] The multivariate Langevin and Fokker-Planck equations
    Gillespie, DT
    AMERICAN JOURNAL OF PHYSICS, 1996, 64 (10) : 1246 - 1257
  • [7] SOLVING MULTIDIMENSIONAL FRACTIONAL FOKKER-PLANCK EQUATIONS VIA UNBIASED DENSITY FORMULAS FOR ANOMALOUS DIFFUSION PROCESSES
    Carnaffan, Sean
    Kawai, Reiichiro
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : B886 - B915
  • [8] LANGEVIN AND FOKKER-PLANCK EQUATIONS FOR KINETIC GROWTH AND AGGREGATION PROCESSES
    SHAPIR, Y
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (14): : L897 - L901
  • [9] Sensitivity analysis of the non-linear Fokker-Planck equations with uncertainty
    Liao, Jie
    Liu, Hui
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 64
  • [10] Anomalous heat diffusion from fractional Fokker-Planck equation
    Li, Shu-Nan
    Cao, Bing-Yang
    APPLIED MATHEMATICS LETTERS, 2020, 99 (99)