Structure of solid lipid nanoparticles produced by a microwave-assisted microemulsion technique

被引:24
|
作者
Shah, Rohan M. [1 ]
Bryant, Gary [2 ]
Taylor, Matthew [2 ]
Eldridge, Daniel S. [1 ]
Palombo, Enzo A. [1 ]
Harding, Ian H. [1 ]
机构
[1] Swinburne Univ Technol, Fac Sci Engn & Technol, Dept Chem & Biotechnol, Hawthorn, Vic 3122, Australia
[2] RMIT Univ, Sch Appl Sci, Ctr Mol & Nanoscale Phys NanoPHYS, Melbourne, Vic, Australia
来源
RSC ADVANCES | 2016年 / 6卷 / 43期
关键词
DYNAMIC LIGHT-SCATTERING; STEARIC-ACID; PHYSICOCHEMICAL CHARACTERIZATION; TOPICAL DELIVERY; DRUG; INDOMETHACIN; SLN; FORMULATION; STABILITY; LIPOSOMES;
D O I
10.1039/c6ra02020h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have recently reported a novel microwave-assisted microemulsion technique for the production of solid lipid nanoparticles (SLNs). SLNs are colloidal carriers made from physiologically well-tolerated lipids that are normally solid at room and body temperature. These microwave-produced SLNs have small size, moderate zeta potential, high encapsulation efficiency and low crystallinity. The drug release studies conducted on drug-loaded SLNs are consistent with a core-shell structure for the microwave-produced SLNs, but with significantly different release profiles depending on the drug used. We further employed multi-angle static and dynamic light scattering (SLS/DLS) and small angle X-ray scattering (SAXS) techniques to help elucidate the structure of microwave-produced SLNs. The SLS/DLS data for the SLNs prepared in this study are consistent with a core-shell structure with a shell thickness of similar to 13 nm. SAXS data suggest that the SLNs have a lipid lamellar structure with a repeat spacing of 41.0 +/- 0.1 angstrom.
引用
收藏
页码:36803 / 36810
页数:8
相关论文
共 50 条
  • [41] Microemulsion extrusion technique: a new method to produce lipid nanoparticles
    Marcelo Bispo de Jesus
    Allan Radaic
    Inge S. Zuhorn
    Eneida de Paula
    Journal of Nanoparticle Research, 2013, 15
  • [42] Microemulsion extrusion technique: a new method to produce lipid nanoparticles
    de Jesus, Marcelo Bispo
    Radaic, Allan
    Zuhorn, Inge S.
    de Paula, Eneida
    JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (10)
  • [43] Tracking method for the microwave-assisted synthesis of silver nanoparticles
    Patrascu, M.
    Calinescu, I.
    Boscornea, C.
    Lacatusu, I.
    Martin, D.
    Ighigeanu, D.
    Vasile, E.
    Radoiu, M.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2011, 13 (5-6): : 666 - 671
  • [44] Microwave-assisted coating of PMMA beads by silver nanoparticles
    Irzh, Alexander
    Perkas, Nina
    Gedanken, Aharon
    LANGMUIR, 2007, 23 (19) : 9891 - 9897
  • [45] Structural properties of nickel hydroxide/oxyhydroxide and oxide nanoparticles obtained by microwave-assisted oxidation technique
    Motlagh, M. M. Kashani
    Youzbashi, A. A.
    Hashemzadeh, F.
    Sabaghzadeh, L.
    POWDER TECHNOLOGY, 2013, 237 : 562 - 568
  • [46] Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method
    Zhu Shao-Peng
    Tang Shao-Chun
    Meng Xiang-Kang
    CHINESE PHYSICS LETTERS, 2009, 26 (07)
  • [47] Microwave-assisted polyol process for synthesis of ni nanoparticles
    Li, DS
    Komarneni, S
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2006, 89 (05) : 1510 - 1517
  • [48] Fast Microwave-Assisted Synthesis of Uniform Magnetic Nanoparticles
    Kozakova, Z.
    Bazant, P.
    Machovsky, M.
    Babayan, V.
    Kuritka, I.
    ACTA PHYSICA POLONICA A, 2010, 118 (05) : 948 - 949
  • [49] Microwave-assisted synthesis and characterization of tin oxide nanoparticles
    Krishnakumar, T.
    Pinna, Nicola
    Kumari, K. Prasanna
    Perumal, K.
    Jayaprakash, R.
    MATERIALS LETTERS, 2008, 62 (19) : 3437 - 3440
  • [50] Microwave-Assisted Synthesis of Selenium Nanoparticles: Bioactivity Insights
    Tisli, Buesra
    Nejati, Omid
    Torkay, Gulsah
    Giray, Betul
    Bal-Ozturk, Ayca
    Bakirdere, Sezgin
    CHEMISTRYSELECT, 2024, 9 (43):