Optical Coherence Tomography Based Biomechanical Fluid-Structure Interaction Analysis of Coronary Atherosclerosis Progression

被引:5
|
作者
Carpenter, Harry J. [1 ]
Ghayesh, Mergen H. [1 ]
Zander, Anthony C. [1 ]
Ottaway, Juanita L. [2 ]
Di Giovanni, Giuseppe [3 ]
Nicholls, Stephen J. [4 ]
Psaltis, Peter J. [3 ,5 ,6 ]
机构
[1] Univ Adelaide, Sch Mech Engn, Adelaide, SA, Australia
[2] South Australian Hlth & Med Res Inst SAHMRI, Adelaide, SA, Australia
[3] South Australian Hlth & Med Res Inst SAHMRI, Vasc Res Ctr, Lifelong Hlth Theme, Adelaide, SA, Australia
[4] Monash Cardiovasc Res Ctr, Clayton, Vic, Australia
[5] Univ Adelaide, Adelaide Med Sch, Adelaide, SA, Australia
[6] Cent Adelaide Local Hlth Network, Dept Cardiol, Adelaide, SA, Australia
来源
基金
英国医学研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
WALL SHEAR-STRESS; HELICAL FLOW; BLOOD-FLOW; CAROTID BIFURCATION; PLAQUE PROGRESSION; NEAR-WALL; FOLLOW-UP; ARTERY; MODELS; DISTRIBUTIONS;
D O I
10.3791/62933
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we present a complete workflow for the biomechanical analysis of atherosclerotic plaque in the coronary vasculature. With atherosclerosis as one of the leading causes of global death, morbidity and economic burden, novel ways of analyzing and predicting its progression are needed. One such computational method is the use of fluid-structure interaction (FSI) to analyze the interaction between the blood flow and artery/plaque domains. Coupled with in vivo imaging, this approach could be tailored to each patient, assisting in differentiating between stable and unstable plaques. We outline the three-dimensional reconstruction process, making use of intravascular Optical Coherence Tomography (OCT) and invasive coronary angiography (ICA). The extraction of boundary conditions for the simulation, including replicating the three-dimensional motion of the artery, is discussed before the setup and analysis is conducted in a commercial finite element solver. The procedure for describing the highly nonlinear hyperelastic properties of the artery wall and the pulsatile blood velocity/pressure is outlined along with setting up the system coupling between the two domains. We demonstrate the procedure by analyzing a non-culprit, mildly stenotic, lipid-rich plaque in a patient following myocardial infarction. Established and emerging markers related to atherosclerotic plaque progression, such as wall shear stress and local normalized helicity, respectively, are discussed and related to the structural response in the artery wall and plaque. Finally, we translate the results to potential clinical relevance, discuss limitations, and outline areas for further development. The method described in this paper shows promise for aiding in the determination of sites at risk of atherosclerotic progression and, hence, could assist in managing the significant death, morbidity, and economic burden of atherosclerosis.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Dimensional analysis in fluid-structure interaction
    de Langre, E
    HOUILLE BLANCHE-REVUE INTERNATIONALE DE L EAU, 2000, (3-4): : 14 - 18
  • [22] A Fluid-Structure Interaction Index of Coronary Plaque Rupture
    Ilegbusi, Olusegun
    Valaski-Tuema, Eric
    BIOMEDICAL SIMULATION, PROCEEDINGS, 2010, 5958 : 98 - 107
  • [23] A Fluid-Structure Interaction Model of the Left Coronary Artery
    Meza, Daphne
    Rubenstein, David A.
    Yin, Wei
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2018, 140 (12):
  • [24] Strength analysis of a diffuser pump based on fluid-structure interaction
    Liu, H.-L., 1600, Chinese Vibration Engineering Society (32):
  • [25] Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography
    Liu, Linbo
    Gardecki, Joseph A.
    Nadkarni, Seemantini K.
    Toussaint, Jimmy D.
    Yagi, Yukako
    Bouma, Brett E.
    Tearney, Guillermo J.
    NATURE MEDICINE, 2011, 17 (08) : 1010 - U132
  • [26] Effect of TAVR commissural alignment on coronary flow: A fluid-structure interaction analysis
    Oks, David
    Houzeaux, Guillaume
    Vazquez, Mariano
    Neidlin, Michael
    Samaniego, Cristobal
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 242
  • [27] Fluid-structure interaction analysis with a subsonic potential-based fluid formulation
    Sussman, T
    Sundqvist, J
    COMPUTERS & STRUCTURES, 2003, 81 (8-11) : 949 - 962
  • [28] Vasculitis or coronary atherosclerosis? Optical coherence tomography images in polyarteritis nodosa
    Lewandowski, Maciej
    Goracy, Jaroslaw
    Kossuth, Irmina
    Peregud-Pogorzelska, Malgorzata
    KARDIOLOGIA POLSKA, 2018, 76 (04) : 813 - 813
  • [29] Author Correction: Optical coherence tomography in coronary atherosclerosis assessment and intervention
    Makoto Araki
    Seung-Jung Park
    Harold L. Dauerman
    Shiro Uemura
    Jung-Sun Kim
    Carlo Di Mario
    Thomas W. Johnson
    Giulio Guagliumi
    Adnan Kastrati
    Michael Joner
    Niels Ramsing Holm
    Fernando Alfonso
    William Wijns
    Tom Adriaenssens
    Holger Nef
    Gilles Rioufol
    Nicolas Amabile
    Geraud Souteyrand
    Nicolas Meneveau
    Edouard Gerbaud
    Maksymilian P. Opolski
    Nieves Gonzalo
    Guillermo J. Tearney
    Brett Bouma
    Aaron D. Aguirre
    Gary S. Mintz
    Gregg W. Stone
    Christos V. Bourantas
    Lorenz Räber
    Sebastiano Gili
    Kyoichi Mizuno
    Shigeki Kimura
    Toshiro Shinke
    Myeong-Ki Hong
    Yangsoo Jang
    Jin Man Cho
    Bryan P. Yan
    Italo Porto
    Giampaolo Niccoli
    Rocco A. Montone
    Vikas Thondapu
    Michail I. Papafaklis
    Lampros K. Michalis
    Harmony Reynolds
    Jacqueline Saw
    Peter Libby
    Giora Weisz
    Mario Iannaccone
    Tommaso Gori
    Konstantinos Toutouzas
    Nature Reviews Cardiology, 2024, 21 : 348 - 348
  • [30] Analysis and Optimization of Flow-Guided Structure Based on Fluid-Structure Interaction
    Cui, Yue
    Wang, Liyuan
    Ru, Jixing
    Wu, Jian
    FDMP-FLUID DYNAMICS & MATERIALS PROCESSING, 2023, 19 (06): : 1573 - 1584