No approximate complex fermion coherent states

被引:2
|
作者
Tyc, Tomas [1 ]
Hamilton, Brett
Sanders, Barry C.
Oliver, William D.
机构
[1] Masaryk Univ, Inst Theoret Phys, Brno 61137, Czech Republic
[2] Univ Calgary, Inst Quantum Informat Sci, Calgary, AB ABT24 1N4, Canada
[3] Macquarie Univ, Australian Ctr Excellence Quantum Comp Technol, Sydney, NSW 2109, Australia
[4] MIT Lincoln Lab, Lexington, MA 02420 USA
基金
澳大利亚研究理事会;
关键词
coherent state; fermion field; correlator; factorization; Grassmann numbers;
D O I
10.1007/s10701-007-9140-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Whereas boson coherent states with complex parametrization provide an elegant, and intuitive representation, there is no counterpart for fermions using complex parametrization. However, a complex parametrization provides a valuable way to describe amplitude and phase of a coherent beam. Thus we pose the question of whether a fermionic beam can be described, even approximately, by a complex-parametrized coherent state and define, in a natural way, approximate complex-parametrized fermion coherent states. Then we identify four appealing properties of boson coherent states (eigenstate of annihilation operator, displaced vacuum state, preservation of product states under linear coupling, and factorization of correlators) and show that these approximate complex fermion coherent states fail all four criteria. The inapplicability of complex parametrization supports the use of Grassman algebras as an appropriate alternative.
引用
收藏
页码:1027 / 1048
页数:22
相关论文
共 50 条
  • [31] The suμ(1, 1) coherent states on the quantum complex plane
    Gong, RS
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1998, 30 (02) : 263 - 268
  • [32] Integrated generation of complex optical quantum states and their coherent control
    Roztocki, Piotr
    Kues, Michael
    Reimer, Christian
    Cortes, Luis Romero
    Sciara, Stefania
    Wetzel, Benjamin
    Zhang, Yanbing
    Cino, Alfonso
    Chu, Sai T.
    Little, Brent E.
    Moss, David J.
    Caspani, Lucia
    Azana, Jose
    Morandotti, Roberto
    NANOPHOTONICS AUSTRALASIA 2017, 2017, 10456
  • [33] COHERENT STATES ON THE M-SHEETED COMPLEX-PLANE
    VOURDAS, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (05) : 2687 - 2697
  • [34] Generalized complex Hermite polynomials with associated nonlinear coherent states
    Ahbli, Khalid
    El Wassouli, Fouzia
    Mouayn, Zouhair
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (07)
  • [35] Semiclassical propagation of coherent states using complex and real trajectories
    Novaes, M
    de Aguiar, MAM
    PHYSICAL REVIEW A, 2005, 72 (03):
  • [36] WIGNER DISTRIBUTION FUNCTION AND COHERENT STATE OF A FERMION
    ABE, S
    SUZUKI, N
    EUROPHYSICS LETTERS, 1989, 9 (02): : 101 - 106
  • [37] COVARIANCE AND UNIQUENESS OF THE CANONICAL FERMION COHERENT STATE
    LEE, CJ
    PHYSICAL REVIEW A, 1992, 46 (09): : 6049 - 6051
  • [38] GENERALIZED COHERENT STATES AND GENERALIZED SQUEEZED COHERENT STATES
    SATYANARAYANA, MV
    PHYSICAL REVIEW D, 1985, 32 (02): : 400 - 404
  • [39] LOCALIZED HIGGS FERMION STATES
    HARLEY, D
    SOFF, G
    RAFELSKI, J
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1990, 16 (10) : L207 - L212
  • [40] Composite fermion states on the torus
    Hermanns, M.
    PHYSICAL REVIEW B, 2013, 87 (23):