Computational Complexity of Robust Schur Stability Analysis by the Generalized Stability Feeler

被引:0
|
作者
Matsuda, Tadasuke [1 ]
Matsui, Hajime [2 ]
Kawanishi, Michihiro [2 ]
Narikiyo, Tatsuo [2 ]
机构
[1] Tokyo Univ Sci, Dept Elect Engn, Fac Engn Div 2, Tokyo 162, Japan
[2] Toyota Technol Inst, Nagoya, Aichi 468, Japan
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper gives the computational complexity of the robust Schur stability analysis by the generalized stability feeler. Computational complexity of robust stability analysis is considered as an important characteristic to evaluate robust stability analysis methods. We derive the computational complexity from the algorithm of the generalized stability feeler. The result shows that the robust Schur stability can be checked in polynomial time.
引用
收藏
页码:55 / 59
页数:5
相关论文
共 50 条
  • [31] Robust Schur Stability of Polynomials with Polynomial Parameter Dependency
    Jürgen Garloff
    Birgit Graf
    Multidimensional Systems and Signal Processing, 1999, 10 : 189 - 199
  • [32] Robust Schur stability of polynomials with polynomial parameter dependency
    Fachhochschule Konstanz, Fachbereich Informatik, Postfach 10 05 43, D-78405 Konstanz, Germany
    Multidimens Syst Signal Proc, 2 (189-199):
  • [33] Probabilistic search algorithms for robust stability analysis and their complexity properties
    Khargonekar, PP
    Tikku, A
    LEARNING, CONTROL AND HYBRID SYSTEMS, 1999, 241 : 25 - 45
  • [34] New method to derive stability intervals of symmetric system matrices with multiple uncertain parameters using the generalized stability feeler
    Matsuda, Tadasuke
    Kawanishi, Michihiro
    Narikiyo, Tatsuo
    IEEJ Transactions on Electronics, Information and Systems, 2013, 133 (06) : 1109 - 1113
  • [35] Synthesis of robust PID Control systems using stability feeler and partial model matching
    Matsuda, Tadasuke
    Nakamura, Yukinori
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2020, 15 (03) : 426 - 432
  • [36] A robust Schur stability condition for interval polynomial matrix systems
    Ahn, Hyo-Sung
    Chen, YangQuan
    Moore, Kevin L.
    IEEE ICMA 2006: PROCEEDING OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2006, : 672 - +
  • [37] SCHUR STABILITY AND STABILITY DOMAIN CONSTRUCTION
    DELANSKY, JF
    BOSE, NK
    INTERNATIONAL JOURNAL OF CONTROL, 1989, 49 (04) : 1175 - 1183
  • [38] The Schur stability via the Hurwitz stability analysis using a biquadratic transformation
    Jalili-Kharaajoo, M
    Araabi, BN
    AUTOMATICA, 2005, 41 (01) : 173 - 176
  • [39] Computational complexity of Lyapunov stability analysis problems for a class of nonlinear systems
    McConley, MW
    Appleby, BD
    Dahleh, MA
    Feron, E
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (06) : 2176 - 2193
  • [40] Stability and robustness analysis for subspace tracking based on reducing computational complexity
    Qian, Lin-Jie
    Cheng, Zhu
    Shi, Bin-Bin
    Wan, Jian-Wei
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2010, 32 (03): : 75 - 81