共 50 条
CRISPR-Associated Primase-Polymerases are implicated in prokaryotic CRISPR-Cas adaptation
被引:9
|作者:
Zabrady, Katerina
[1
]
Zabrady, Matej
[1
]
Kolesar, Peter
[1
,2
]
Li, Arthur W. H.
[1
]
Doherty, Aidan J.
[1
]
机构:
[1] Univ Sussex, Sch Life Sci, Genome Damage & Stabil Ctr, Brighton, E Sussex, England
[2] Masaryk Univ, Natl Ctr Biomol Res, Brno, Czech Republic
基金:
英国生物技术与生命科学研究理事会;
关键词:
HOST FACTOR;
DNA;
INTEGRATION;
PROTEINS;
SYSTEM;
REPLICATION;
SUPERFAMILY;
ACQUISITION;
DIVERSITY;
MECHANISM;
D O I:
10.1038/s41467-021-23535-9
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
CRISPR-Cas pathways provide prokaryotes with acquired "immunity" against foreign genetic elements, including phages and plasmids. Although many of the proteins associated with CRISPR-Cas mechanisms are characterized, some requisite enzymes remain elusive. Genetic studies have implicated host DNA polymerases in some CRISPR-Cas systems but CRISPR-specific replicases have not yet been discovered. We have identified and characterised a family of CRISPR-Associated Primase-Polymerases (CAPPs) in a range of prokaryotes that are operonically associated with Cas1 and Cas2. CAPPs belong to the Primase-Polymerase (Prim-Pol) superfamily of replicases that operate in various DNA repair and replication pathways that maintain genome stability. Here, we characterise the DNA synthesis activities of bacterial CAPP homologues from Type IIIA and IIIB CRISPR-Cas systems and establish that they possess a range of replicase activities including DNA priming, polymerisation and strand-displacement. We demonstrate that CAPPs operonically-associated partners, Cas1 and Cas2, form a complex that possesses spacer integration activity. We show that CAPPs physically associate with the Cas proteins to form bespoke CRISPR-Cas complexes. Finally, we propose how CAPPs activities, in conjunction with their partners, may function to undertake key roles in CRISPR-Cas adaptation. CAPPs are putative Primase-Polymerases associated with CRISPR-Cas operons. Here, the authors show CAPPs genetic and physical association with Cas1 and Cas2, their capacity to function as DNA-dependent DNA primases and DNA polymerases, and that Cas1-Cas2 complex adjacent to CAPP has bona fide spacer integration activity.
引用
收藏
页数:18
相关论文