Towards a geometrical interpretation of rainbow geometries

被引:15
|
作者
Relancio, J. J. [1 ,2 ]
Liberati, S. [3 ,4 ]
机构
[1] Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Ctr Astroparticulas & Fis Altas Energias CAPA, E-50009 Zaragoza, Spain
[3] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[4] Ist Nazl Fis Nucl, Sez Trieste, IFPU Inst Fundamental Phys Universe, Via Beirut 2, I-34014 Trieste, Italy
关键词
rainbow geometry; doubly special relativity; Lorentz symmetry; alternative theories of gravity; DOUBLY-SPECIAL RELATIVITY;
D O I
10.1088/1361-6382/ac05d7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the literature, there are several papers establishing a correspondence between a deformed kinematics and a nontrivial (momentum dependent) metric. In this work, we study in detail the relationship between the trajectories given by a deformed Hamiltonian and the geodesic motion obtained from a geometry in the cotangent bundle, finding that both trajectories coincide when the Hamiltonian is identified with the squared distance in momentum space. Moreover, following the natural structure of the cotangent bundle geometry, one can obtain generalized Einstein equations. Since the metric is not invariant under momentum diffeomorphisms (changes of momentum coordinates) we note that, in order to have a conserved Einstein tensor (in the same sense of general relativity), a privileged momentum basis appears, a completely new result, that cannot be found in absence of space-time curvature which settles a long standing ambiguity of this geometric approach. After that, we consider in an expanding Universe the geodesic motion and the Raychaudhuri's equations, and we show how to construct vacuum solutions to the Einstein equations. Finally, we make a comment about the possible phenomenological implications of our framework.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] A GEOMETRICAL INTERPRETATION OF THE ROUTH TEST
    LEPSCHY, A
    MIAN, GA
    VIARO, U
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1988, 325 (06): : 695 - 703
  • [22] Geometrical interpretation of critical exponents
    Lima, Henrique A.
    Luis, Edwin E. Mozo
    Carrasco, Ismael S. S.
    Hansen, Alex
    Oliveira, Fernando A.
    PHYSICAL REVIEW E, 2024, 110 (06)
  • [23] GEOMETRICAL INTERPRETATION OF CHEMICAL PROCESS
    TMENOV, DN
    VOZNYUK, VI
    ZELENINA, AI
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA B-GEOLOGICHNI KHIMICHNI TA BIOLOGICHNI NAUKI, 1975, (05): : 450 - 452
  • [24] GEOMETRICAL INTERPRETATION OF VARIATIONAL RECEIVER
    VAKULSKIY, AA
    MIZYUK, LY
    TSEMA, MI
    TELECOMMUNICATIONS AND RADIO ENGINEERING, 1977, 31-2 (01) : 101 - 103
  • [25] A GEOMETRICAL INTERPRETATION OF BALANCED MOTION
    DIXON, R
    METEOROLOGICAL MAGAZINE, 1970, 99 (1178): : 256 - &
  • [26] A geometrical interpretation of Grassmannian coordinates
    Dzhunushaliev, V
    GENERAL RELATIVITY AND GRAVITATION, 2002, 34 (08) : 1267 - 1275
  • [27] Geometrical Interpretation of Pearson Residuals
    Tsumoto, Shusaku
    Hirano, Shoji
    2012 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING (GRC 2012), 2012, : 487 - 492
  • [28] GEOMETRICAL INTERPRETATION OF LUMINOSITY OF QUASARS
    LEFLOCH, AC
    LEBRETON, J
    NATURE-PHYSICAL SCIENCE, 1972, 235 (54): : 25 - &
  • [29] A Geometrical Interpretation of Grassmannian Coordinates
    V. Dzhunushaliev
    General Relativity and Gravitation, 2002, 34 : 1267 - 1275
  • [30] GEOMETRICAL INTERPRETATION OF ELECTRODYNAMICS - AN ANALYSIS
    FROHLICH, H
    SUPPLEMENT OF THE PROGRESS OF THEORETICAL PHYSICS, 1965, : 1 - &