Harmonic oscillator tensors. V. The doubly degenerate harmonic oscillator

被引:0
|
作者
Palting, P [1 ]
机构
[1] Catholic Univ Amer, Ctr Mol Dynam & Energy Transfer, Dept Chem, Washington, DC 20064 USA
关键词
doubly degenerate harmonic oscillator; step operators; Heisenberg Lie algebras; irreducible tensors; matrix elements;
D O I
10.1002/(SICI)1097-461X(1998)67:6<343::AID-QUA1>3.0.CO;2-V
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The step operators of the two-dimensional isotropic harmonic oscillator are shown to be separable into the basis elements of two disjoint Heisenberg Lie algebras. This separability leads to two sets of irreducible tensors, each of which is based upon its associated underlying Heisenberg Lie algebra. The matrix elements of these tensors are evaluated, along with those of some vibrational operators of physical interest. The possibility of other irreducible tensors are discussed and their usefulness is compared with that of those found here. (C) 1998 John Wiley & Sons, Inc.
引用
收藏
页码:343 / 357
页数:15
相关论文
共 50 条
  • [31] ANTI-PT-SYMMETRIC HARMONIC OSCILLATOR AND ITS RELATION TO THE INVERTED HARMONIC OSCILLATOR
    Amaouche, Nadjat
    Bouguerche, Ishak
    Zerimeche, Rahma
    Maamache, Mustapha
    REPORTS ON MATHEMATICAL PHYSICS, 2022, 90 (03) : 385 - 397
  • [32] Harmonic oscillator tensors .4. A tensorial approach to internal rotations in molecules
    Palting, P
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1997, 65 (04) : 305 - 315
  • [33] Harmonic oscillator Green functions
    Khrebtukov, DB
    Macek, JH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (12): : 2853 - 2868
  • [34] Hemispheroidal quantum harmonic oscillator
    Poenaru, D. N.
    Gherghescu, R. A.
    Solov'yov, A. V.
    Greiner, W.
    PHYSICS LETTERS A, 2008, 372 (33) : 5448 - 5451
  • [35] The rotating harmonic oscillator revisited
    Francisco M. Fernández
    Journal of Mathematical Chemistry, 2022, 60 : 555 - 561
  • [36] SPECTRUM OF CLASSICAL HARMONIC OSCILLATOR
    ALONSO, V
    KALNAY, AJ
    MUJICA, JD
    ACTA CIENTIFICA VENEZOLANA, 1971, 22 : 36 - &
  • [37] JOST FUNCTIONS FOR HARMONIC OSCILLATOR
    ALESSAND.VA
    GIAMBIAGI, JJ
    NUOVO CIMENTO, 1963, 29 (06): : 1353 - +
  • [38] The quantum damped harmonic oscillator
    Um, CI
    Yeon, KH
    George, TF
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 362 (2-3): : 63 - 192
  • [39] Quaternionic quantum harmonic oscillator
    Sergio Giardino
    The European Physical Journal Plus, 136
  • [40] Quantization of the damped harmonic oscillator
    Serhan, M.
    Abusini, M.
    Al-Jamel, Ahmed
    El-Nasser, H.
    Rabei, Eqab M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)